Skip to main content

A Panorama of Positivity. I: Dimension Free

Part of the Trends in Mathematics book series (TM)

Abstract

This survey contains a selection of topics unified by the concept of positive semidefiniteness (of matrices or kernels), reflecting natural constraints imposed on discrete data (graphs or networks) or continuous objects (probability or mass distributions). We put emphasis on entrywise operations which preserve positivity, in a variety of guises. Techniques from harmonic analysis, function theory, operator theory, statistics, combinatorics, and group representations are invoked. Some partially forgotten classical roots in metric geometry and distance transforms are presented with comments and full bibliographical references. Modern applications to high-dimensional covariance estimation and regularization are included.

Keywords

  • Metric geometry
  • Positive semidefinite matrix
  • Toeplitz matrix
  • Hankel matrix
  • Positive definite function
  • Completely monotone functions
  • Absolutely monotonic functions
  • Entrywise calculus
  • Generalized Vandermonde matrix
  • Schur polynomials
  • Symmetric function identities
  • Totally positive matrices
  • Totally non-negative matrices
  • Totally positive completion problem
  • Sample covariance
  • Covariance estimation
  • Hard/soft thresholding
  • Sparsity pattern
  • Critical exponent of a graph
  • Chordal graph
  • Loewner monotonicity
  • Convexity
  • Super-additivity

2010 Mathematics Subject Classification

  • 15-02
  • 26-02
  • 15B48
  • 51F99
  • 15B05
  • 05E05
  • 44A60
  • 15A24
  • 15A15
  • 15A45
  • 15A83
  • 47B35
  • 05C50
  • 30E05
  • 62J10

Serguei Shimorin, in memoriam

D.G. is partially supported by a University of Delaware Research Foundation grant, by a Simons Foundation collaboration grant for mathematicians, and by a University of Delaware Research Foundation Strategic Initiative grant. A.K. is partially supported by Ramanujan Fellowship SB/S2/RJN-121/2017 and MATRICS grant MTR/2017/000295 from SERB (Govt. of India), by grant F.510/25/CAS-II/2018(SAP-I) from UGC (Govt. of India), and by a Young Investigator Award from the Infosys Foundation.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    An alternate proof of sufficiency is to note that \(A := [ \cos \rho ( x_j, x_k ) ]_{j, k = 1}^n\) is a Gram matrix of rank r, hence equal to B T B for some r × n matrix B with unit columns. Denoting these columns by b 1, …, b n ∈ S r−1, the map x jb j is an isometry since ρ(x j, x k) and \(\sphericalangle ( y_j, y_k ) \in [ 0, \pi ]\). Moreover, since A has rank r, the b j cannot all lie in a smaller-dimensional sphere.

  2. 2.

    Recall [95] that a metric space (X, ρ) is n-point homogeneous if, given finite sets X 1, X 2 ⊂ X of equal size no more than n, every isometry from X 1 to X 2 extends to a self-isometry of X. This property was first considered by Birkhoff [15], and of course differs from the more common usage of the terminology of a homogeneous space GH, whose study by Bochner was mentioned above.

  3. 3.

    This is connected to semi-algebraic geometry and to Hilbert’s seventeenth problem: recall the famous result of Motzkin that there are non-negative polynomials on \(\mathbb {R}^d\) that are not sums of squares, such as x 4 y 2 + x 2 y 4 − 3x 2 y 2 + 1. Such phenomena have been studied in several settings, including polytopes (by Farkas, Handelman, and Pólya) and more general semi-algebraic sets (by Putinar, Schmüdgen, Stengel, Vasilescu, and others).

References

  1. N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A.B. Goncharov, A. Postnikov, J. Trnka. Scattering amplitudes and the positive Grassmannian (2012). Preprint. Available at http://arxiv.org/abs/1212.5605

  2. V.S. Barbosa, V.A. Menegatto, Strictly positive definite kernels on compact two-point homogeneous spaces. Math. Inequal. Appl. 19(2), 743–756 (2016)

    MathSciNet  MATH  Google Scholar 

  3. V.S. Barbosa, V.A. Menegatto, Strict positive definiteness on products of compact two-point homogeneous spaces. Integr. Transf. Spec. Funct. 28(1), 56–73 (2017)

    CrossRef  MathSciNet  MATH  Google Scholar 

  4. R.K. Beatson, W. zu Castell, Dimension hopping and families of strictly positive definite zonal basis functions on spheres. J. Approx. Theory 221(C), 22–37 (2017)

    CrossRef  MathSciNet  MATH  Google Scholar 

  5. R.K. Beatson, W. zu Castell, Y. Xu, A Pólya criterion for (strict) positive-definiteness on the sphere. IMA J. Numer. Anal. 34(2), 550–568 (2014)

    CrossRef  MATH  Google Scholar 

  6. A. Belton, D. Guillot, A. Khare, M. Putinar, Matrix positivity preservers in fixed dimension. I. Adv. Math. 298, 325–368 (2016)

    CrossRef  MathSciNet  MATH  Google Scholar 

  7. A. Belton, D. Guillot, A. Khare, M. Putinar, Moment-sequence transforms (2016). Preprint. Available at http://arxiv.org/abs/1610.05740

  8. A. Belton, D. Guillot, A. Khare, M. Putinar, Total-positivity preservers (2017). Preprint. Available at http://arxiv.org/abs/1711.10468

  9. A. Belton, D. Guillot, A. Khare, M. Putinar, A panorama of positivity (2018). Preprint. Available at http://arxiv.org/abs/1812.05482

  10. A. Belton, D. Guillot, A. Khare, M. Putinar, A panorama of positivity. II: fixed dimension, in Complex Analysis and Spectral Theory: Thomas Ransford Festschrift, ed. by J. Mashreghi. CRM Proceedings and Lecture Notes Series (American Mathematical Society, Providence, to appear)

    Google Scholar 

  11. C. Berg, E. Porcu, From Schoenberg coefficients to Schoenberg functions. Constr. Approx. 45(2), 217–241 (2017)

    CrossRef  MathSciNet  MATH  Google Scholar 

  12. C. Berg, J.P.R. Christensen, P. Ressel, Positive definite functions on abelian semigroups. Math. Ann. 223(3), 253–274 (1976)

    CrossRef  MathSciNet  MATH  Google Scholar 

  13. C. Berg, A.P. Peron, E. Porcu, Schoenberg’s theorem for real and complex Hilbert spheres revisited. J. Approx. Theory 228, 58–78 (2018)

    CrossRef  MathSciNet  MATH  Google Scholar 

  14. S. Bernstein, Sur les fonctions absolument monotones. Acta Math. 52(1), 1–66 (1929)

    CrossRef  MathSciNet  MATH  Google Scholar 

  15. G. Birkhoff, Metric foundations of geometry. I. Trans. Am. Math. Soc. 55, 465–492 (1944)

    CrossRef  MathSciNet  MATH  Google Scholar 

  16. L.M. Blumenthal, Theory and Applications of Distance Geometry, 2nd edn. (Chelsea Publishing Co., Bronx, 1970)

    MATH  Google Scholar 

  17. R.P. Boas, Jr., D.V. Widder, Functions with positive differences. Duke Math. J. 7(1), 496–503 (1940)

    CrossRef  MathSciNet  MATH  Google Scholar 

  18. S. Bochner, Monotone Funktionen, Stieltjessche Integrale und harmonische Analyse. Math. Ann. 108(1), 378–410 (1933)

    MathSciNet  MATH  Google Scholar 

  19. S. Bochner, Hilbert distances and positive definite functions. Ann. Math. 42(3), 647–656 (1941)

    CrossRef  MathSciNet  MATH  Google Scholar 

  20. S. Bochner, Harmonic Analysis and the Theory of Probability (University of California Press, Berkeley, 1955)

    MATH  Google Scholar 

  21. R.N. Bonfim, J.C. Guella, V.A. Menegatto, Strictly positive definite functions on compact two-point homogeneous spaces: the product alternative. SIGMA Symmetry Integrability Geom. Methods Appl. 14, 112 (2018)

    MathSciNet  MATH  Google Scholar 

  22. F. Brenti, Unimodal, log-concave and Pólya frequency sequences in combinatorics. Mem. Am. Math. Soc. 81(413), viii+106 (1989)

    Google Scholar 

  23. D. Chen, V.A. Menegatto, X. Sun, A necessary and sufficient condition for strictly positive definite functions on spheres. Proc. Am. Math. Soc. 131(9), 2733–2740 (2003)

    CrossRef  MathSciNet  MATH  Google Scholar 

  24. J.P.R. Christensen, P. Ressel, Functions operating on positive definite matrices and a theorem of Schoenberg. Trans. Am. Math. Soc. 243, 89–95 (1978)

    CrossRef  MathSciNet  MATH  Google Scholar 

  25. H. Cohn, Y. Zhao, Sphere packing bounds via spherical codes. Duke Math. J. 163(10), 1965–2002 (2014)

    CrossRef  MathSciNet  MATH  Google Scholar 

  26. J. Dattorro, Equality relating Euclidean distance cone to positive semidefinite cone. Linear Algebra Appl. 428(11–12), 2597–2600 (2008)

    CrossRef  MathSciNet  MATH  Google Scholar 

  27. B. Efron, Increasing properties of Pólya frequency functions. Ann. Math. Stat. 36(1), 272–279 (1965)

    CrossRef  MATH  Google Scholar 

  28. J. Emonds, H. Führ, Strictly positive definite functions on compact abelian groups. Proc. Am. Math. Soc. 139(3), 1105–1113 (2011)

    CrossRef  MathSciNet  MATH  Google Scholar 

  29. S.M. Fallat, C.R. Johnson, Totally Nonnegative Matrices. Princeton Series in Applied Mathematics (Princeton University Press, Princeton, 2011)

    Google Scholar 

  30. S.M. Fallat, C.R. Johnson, R.L. Smith, The general totally positive matrix completion problem with few unspecified entries. Electron. J. Linear Algebra 7, 1–20 (2000)

    CrossRef  MathSciNet  MATH  Google Scholar 

  31. S.M. Fallat, C.R. Johnson, A.D. Sokal, Total positivity of sums, Hadamard products and Hadamard powers: results and counterexamples. Linear Algebra Appl. 520, 242–259 (2017)

    MATH  Google Scholar 

  32. M. Fekete, Über ein problem von Laguerre. Rend. Circ. Math. Palermo 34, 89–120 (1912)

    CrossRef  MATH  Google Scholar 

  33. C.H. FitzGerald, C.A. Micchelli, A. Pinkus, Functions that preserve families of positive semidefinite matrices. Linear Algebra Appl. 221, 83–102 (1995)

    CrossRef  MathSciNet  MATH  Google Scholar 

  34. S. Fomin, A. Zelevinsky, Total positivity: tests and parametrizations. Math. Intell. 22(1), 23–33 (2000)

    CrossRef  MathSciNet  MATH  Google Scholar 

  35. S. Fomin, A. Zelevinsky, Cluster algebras. I. Foundations. J. Am. Math. Soc. 15(2), 497–529 (2002)

    CrossRef  MATH  Google Scholar 

  36. F.R. Gantmacher, M.G. Krein, Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems, ed. by A. Eremenko, revised edn. (AMS Chelsea Publishing, New York, 2002)

    Google Scholar 

  37. M. Gasca, C.A. Micchelli (eds.), Total Positivity and its Applications. Mathematics and Its Applications, vol. 359 (Springer, Utrecht, 1996)

    MATH  Google Scholar 

  38. I.M. Gelfand, Normierte Ringe. Rec. Math. [Mat. Sbornik] N. S. 9(51), 3–24 (1941)

    Google Scholar 

  39. T. Gneiting, Strictly and non-strictly positive definite functions on spheres. Bernoulli 19(4), 1327–1349 (2013)

    CrossRef  MathSciNet  MATH  Google Scholar 

  40. J.C. Guella, V.A. Menegatto, Strictly positive definite kernels on a product of spheres. J. Math. Anal. Appl. 435(1), 286–301 (2016)

    CrossRef  MathSciNet  MATH  Google Scholar 

  41. J.C. Guella, V.A. Menegatto, Strictly positive definite kernels on the torus. Constr. Approx. 46(2), 271–284 (2017)

    CrossRef  MathSciNet  MATH  Google Scholar 

  42. J.C. Guella, V.A. Menegatto, A.P. Peron, An extension of a theorem of Schoenberg to products of spheres. Banach J. Math. Anal. 10(4), 671–685 (2016)

    CrossRef  MathSciNet  MATH  Google Scholar 

  43. J.C. Guella, V.A. Menegatto, A.P. Peron, Strictly positive definite kernels on a product of spheres II. SIGMA Symmetry Integrability Geom. Methods Appl. 12, 15 (2016)

    MathSciNet  MATH  Google Scholar 

  44. J.C. Guella, V.A. Menegatto, A.P. Peron, Strictly positive definite kernels on a product of circles. Positivity 21(1), 329–342 (2017)

    CrossRef  MathSciNet  MATH  Google Scholar 

  45. D. Guillot, B. Rajaratnam, Retaining positive definiteness in thresholded matrices. Linear Algebra Appl. 436(11), 4143–4160 (2012)

    CrossRef  MathSciNet  MATH  Google Scholar 

  46. D. Guillot, B. Rajaratnam, Functions preserving positive definiteness for sparse matrices. Trans. Am. Math. Soc. 367(1), 627–649 (2015)

    CrossRef  MathSciNet  MATH  Google Scholar 

  47. D. Guillot, A. Khare, B. Rajaratnam, Preserving positivity for rank-constrained matrices. Trans. Am. Math. Soc. 369(9), 6105–6145 (2017)

    CrossRef  MathSciNet  MATH  Google Scholar 

  48. H. Helson, J.-P. Kahane, Y. Katznelson, W. Rudin, The functions which operate on Fourier transforms. Acta Math. 102(1–2), 135–157 (1959)

    CrossRef  MathSciNet  MATH  Google Scholar 

  49. C.S. Herz, Fonctions opérant sur les fonctions définies-positives. Ann. Inst. Fourier (Grenoble) 13(1), 161–180 (1963)

    CrossRef  MathSciNet  MATH  Google Scholar 

  50. R.A. Horn, The theory of infinitely divisible matrices and kernels. Trans. Am. Math. Soc. 136, 269–286 (1969)

    CrossRef  MathSciNet  MATH  Google Scholar 

  51. G.J.O. Jameson, Counting zeros of generalised polynomials: descartes’ rule of signs and Laguerre’s extensions. Math. Gaz. 90(518), 223–234 (2006)

    CrossRef  Google Scholar 

  52. J.-P. Kahane, Sur un théorème de Wiener–Lévy. C. R. Acad. Sci. Paris 246, 1949–1951 (1958)

    MathSciNet  MATH  Google Scholar 

  53. J.-P. Kahane, W. Rudin, Caractérisation des fonctions qui opèrent sur les coefficients de Fourier-Stieltjes. C. R. Acad. Sci. Paris 247, 773–775 (1958)

    MathSciNet  MATH  Google Scholar 

  54. S. Karlin, Total Positivity, vol. I (Stanford University Press, Palo Alto, 1968)

    MATH  Google Scholar 

  55. S. Karlin, Y. Rinott, A generalized Cauchy–Binet formula and applications to total positivity and majorization. J. Multivar. Anal. 27(1), 284–299 (1988)

    CrossRef  MathSciNet  MATH  Google Scholar 

  56. Y. Katznelson, Sur les fonctions opérant sur l’algèbre des séries de Fourier absolument convergentes. C. R. Acad. Sci. Paris 247, 404–406 (1958)

    MathSciNet  MATH  Google Scholar 

  57. A. Khare, Smooth entrywise positivity preservers, a Horn–Loewner master theorem, and Schur polynomials (2018). Preprint. Available at http://arxiv.org/abs/1809.01823

  58. A. Khare, T. Tao, On the sign patterns of entrywise positivity preservers in fixed dimension (2017). Preprint. Available at http://arxiv.org/abs/1708.05197

  59. Y. Kodama, L. Williams, KP solitons and total positivity for the Grassmannian. Invent. Math. 198(3), 637–699 (2014)

    CrossRef  MathSciNet  MATH  Google Scholar 

  60. L. Liberti, C. Lavor, N. Maculan, A. Mucherino, Euclidean distance geometry and applications. SIAM Rev. 56(1), 3–69 (2014)

    CrossRef  MathSciNet  MATH  Google Scholar 

  61. L. Lorch, D.J. Newman, On the composition of completely monotonic functions and completely monotonic sequences and related questions. J. Lond. Math. Soc. 28(1), 31–45 (1983)

    CrossRef  MathSciNet  MATH  Google Scholar 

  62. G. Lusztig, Introduction to total positivity, in Positivity in Lie Theory: Open Problems, ed. by J. Hilgert, J.D. Lawson, K.-H. Neeb, E.B. Vinberg. De Gruyter Expositions in Mathematics, vol. 26 (Walter de Gruyter & Co., Berlin, 1998), pp. 133–145

    Google Scholar 

  63. K. Menger, Untersuchungen über allgemeine Metrik. Math. Ann. 100(1), 75–163 (1928)

    CrossRef  MathSciNet  MATH  Google Scholar 

  64. K. Menger, New foundation of euclidean geometry. Am. J. Math. 53(4), 721–745 (1931)

    CrossRef  MathSciNet  MATH  Google Scholar 

  65. J. Møller, M. Nielsen, E. Porcu, E. Rubak, Determinantal point process models on the sphere. Bernoulli 24(2), 1171–1201 (2018)

    CrossRef  MathSciNet  MATH  Google Scholar 

  66. O.R. Musin, The kissing number in four dimensions. Ann. Math. 168(1), 1–32 (2008)

    CrossRef  MathSciNet  MATH  Google Scholar 

  67. O.R. Musin, Multivariate positive definite functions on spheres, in Discrete Geometry and Algebraic Combinatorics. Contemporary Mathematics, vol. 625 (American Mathematical Society, Providence, 2014), pp. 177–190

    Google Scholar 

  68. A. Pinkus, Strictly positive definite functions on a real inner product space. Adv. Comput. Math. 20(4), 263–271 (2004)

    CrossRef  MathSciNet  MATH  Google Scholar 

  69. A. Pinkus, Totally Positive Matrices. Cambridge Tracts in Mathematics, vol. 181 (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  70. G. Pólya, G. Szegő, Aufgaben und Lehrsätze aus der Analysis. Band II: Funktionentheorie, Nullstellen, Polynome Determinanten, Zahlentheorie (Springer, Berlin, 1971)

    Google Scholar 

  71. E. Porcu, A. Alegria, R. Furrer, Modeling temporally evolving and spatially globally dependent data. Int. Stat. Rev. 86(2), 344–377 (2018)

    CrossRef  MathSciNet  Google Scholar 

  72. A. Postnikov, D. Speyer, L. Williams, Matching polytopes, toric geometry, and the totally non-negative Grassmannian. J. Algebraic Combin. 30(2), 173–191 (2009)

    CrossRef  MathSciNet  MATH  Google Scholar 

  73. M. Putinar, Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math. J. 42(3), 969–984 (1993)

    CrossRef  MathSciNet  MATH  Google Scholar 

  74. A.W. Roberts, D.E. Varberg, Convex Functions. Pure and Applied Mathematics, vol. 57 (Academic, New York, 1973)

    Google Scholar 

  75. A.J. Rothman, E. Levina, J. Zhu, Generalized thresholding of large covariance matrices. J. Am. Stat. Assoc. 104(485), 177–186 (2009)

    CrossRef  MathSciNet  MATH  Google Scholar 

  76. W. Rudin, Transformations des coefficients de Fourier. C. R. Acad. Sci. Paris 243, 638–640 (1956)

    MathSciNet  MATH  Google Scholar 

  77. W. Rudin, Positive definite sequences and absolutely monotonic functions. Duke Math. J. 26(4), 617–622 (1959)

    CrossRef  MathSciNet  MATH  Google Scholar 

  78. W. Rudin, Some theorems on Fourier coefficients. Proc. Am. Math. Soc. 10(6), 855–859 (1959)

    CrossRef  MathSciNet  MATH  Google Scholar 

  79. W. Rudin, A strong converse of the Wiener-Levy theorem. Can. J. Math. 14(4), 694–701 (1962)

    CrossRef  MathSciNet  MATH  Google Scholar 

  80. I.J. Schoenberg, Über variationsvermindernde lineare Transformationen. Math. Z. 32(1), 321–328 (1930)

    CrossRef  MathSciNet  MATH  Google Scholar 

  81. I.J. Schoenberg, Remarks to Maurice Fréchet’s article “Sur la définition axiomatique d’une classe d’espace distanciés vectoriellement applicable sur l’espace de Hilbert”. Ann. Math. 36(3), 724–732 (1935)

    CrossRef  MathSciNet  MATH  Google Scholar 

  82. I.J. Schoenberg, On certain metric spaces arising from Euclidean spaces by a change of metric and their imbedding in Hilbert space. Ann. Math. 38(4), 787–793 (1937)

    CrossRef  MathSciNet  MATH  Google Scholar 

  83. I.J. Schoenberg, Metric spaces and completely monotone functions. Ann. Math. 39(4), 811–841 (1938)

    CrossRef  MathSciNet  MATH  Google Scholar 

  84. I.J. Schoenberg, Metric spaces and positive definite functions. Trans. Am. Math. Soc. 44(3), 522–536 (1938)

    CrossRef  MathSciNet  MATH  Google Scholar 

  85. I.J. Schoenberg, On metric arcs of vanishing Menger curvature. Ann. Math. 41(4), 715–726 (1940)

    CrossRef  MathSciNet  MATH  Google Scholar 

  86. I.J. Schoenberg, Positive definite functions on spheres. Duke Math. J. 9(1), 96–108 (1942)

    CrossRef  MathSciNet  MATH  Google Scholar 

  87. I.J. Schoenberg, On Pólya frequency functions. II. Variation-diminishing integral operators of the convolution type. Acta Sci. Math. Szeged 12, 97–106 (1950)

    MATH  Google Scholar 

  88. I.J. Schoenberg, On Pólya frequency functions. I. The totally positive functions and their Laplace transforms. J. Anal. Math. 1(1), 331–374 (1951)

    MATH  Google Scholar 

  89. I.J. Schoenberg, A.M. Whitney, On Pólya frequency functions. III. The positivity of translation determinants with an application to the interpolation problem by spline curves. Trans. Am. Math. Soc. 74(2), 246–259 (1953)

    MATH  Google Scholar 

  90. I. Schur, Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen. J. Reine Angew. Math. 140, 1–28 (1911)

    MathSciNet  MATH  Google Scholar 

  91. I. Steinwart, On the influence of the kernel on the consistency of support vector machines. J. Mach. Learn. Res. 2(1), 67–93 (2002)

    MathSciNet  MATH  Google Scholar 

  92. V.N. Vapnik, The nature of statistical learning theory, in Statistics for Engineering and Information Science, 2nd edn. (Springer, New York, 2000)

    CrossRef  Google Scholar 

  93. H.L. Vasudeva, Positive definite matrices and absolutely monotonic functions. Indian J. Pure Appl. Math. 10(7), 854–858 (1979)

    MathSciNet  MATH  Google Scholar 

  94. J. von Neumann, I.J. Schoenberg, Fourier integrals and metric geometry. Trans. Am. Math. Soc. 50(2), 226–251 (1941)

    CrossRef  MathSciNet  MATH  Google Scholar 

  95. H.-C. Wang, Two-point homogeneous spaces. Ann. Math. 55(1), 177–191 (1952)

    CrossRef  MathSciNet  MATH  Google Scholar 

  96. H. Weyl, Harmonics on homogeneous manifolds. Ann. Math. 35(3), 486–499 (1934)

    CrossRef  MathSciNet  MATH  Google Scholar 

  97. A.M. Whitney, A reduction theorem for totally positive matrices. J. Anal. Math. 2(1), 88–92 (1952)

    CrossRef  MathSciNet  MATH  Google Scholar 

  98. Y. Xu, Positive definite functions on the unit sphere and integrals of Jacobi polynomials. Proc. Am. Math. Soc. 146(5), 2039–2048 (2018)

    CrossRef  MathSciNet  MATH  Google Scholar 

  99. Y. Xu, E.W. Cheney, Strictly positive definite functions on spheres. Proc. Am. Math. Soc. 116(4), 977–981 (1992)

    CrossRef  MathSciNet  MATH  Google Scholar 

  100. J. Ziegel, Convolution roots and differentiability of isotropic positive definite functions on spheres. Proc. Am. Math. Soc. 142(6), 2063–2077 (2014)

    CrossRef  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apoorva Khare .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Belton, A., Guillot, D., Khare, A., Putinar, M. (2019). A Panorama of Positivity. I: Dimension Free. In: Aleman, A., Hedenmalm, H., Khavinson, D., Putinar, M. (eds) Analysis of Operators on Function Spaces. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-14640-5_5

Download citation