Abstract
This survey contains a selection of topics unified by the concept of positive semidefiniteness (of matrices or kernels), reflecting natural constraints imposed on discrete data (graphs or networks) or continuous objects (probability or mass distributions). We put emphasis on entrywise operations which preserve positivity, in a variety of guises. Techniques from harmonic analysis, function theory, operator theory, statistics, combinatorics, and group representations are invoked. Some partially forgotten classical roots in metric geometry and distance transforms are presented with comments and full bibliographical references. Modern applications to high-dimensional covariance estimation and regularization are included.
Keywords
- Metric geometry
- Positive semidefinite matrix
- Toeplitz matrix
- Hankel matrix
- Positive definite function
- Completely monotone functions
- Absolutely monotonic functions
- Entrywise calculus
- Generalized Vandermonde matrix
- Schur polynomials
- Symmetric function identities
- Totally positive matrices
- Totally non-negative matrices
- Totally positive completion problem
- Sample covariance
- Covariance estimation
- Hard/soft thresholding
- Sparsity pattern
- Critical exponent of a graph
- Chordal graph
- Loewner monotonicity
- Convexity
- Super-additivity
2010 Mathematics Subject Classification
- 15-02
- 26-02
- 15B48
- 51F99
- 15B05
- 05E05
- 44A60
- 15A24
- 15A15
- 15A45
- 15A83
- 47B35
- 05C50
- 30E05
- 62J10
Serguei Shimorin, in memoriam
D.G. is partially supported by a University of Delaware Research Foundation grant, by a Simons Foundation collaboration grant for mathematicians, and by a University of Delaware Research Foundation Strategic Initiative grant. A.K. is partially supported by Ramanujan Fellowship SB/S2/RJN-121/2017 and MATRICS grant MTR/2017/000295 from SERB (Govt. of India), by grant F.510/25/CAS-II/2018(SAP-I) from UGC (Govt. of India), and by a Young Investigator Award from the Infosys Foundation.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsNotes
- 1.
An alternate proof of sufficiency is to note that \(A := [ \cos \rho ( x_j, x_k ) ]_{j, k = 1}^n\) is a Gram matrix of rank r, hence equal to B T B for some r × n matrix B with unit columns. Denoting these columns by b 1, …, b n ∈ S r−1, the map x j↦b j is an isometry since ρ(x j, x k) and \(\sphericalangle ( y_j, y_k ) \in [ 0, \pi ]\). Moreover, since A has rank r, the b j cannot all lie in a smaller-dimensional sphere.
- 2.
Recall [95] that a metric space (X, ρ) is n-point homogeneous if, given finite sets X 1, X 2 ⊂ X of equal size no more than n, every isometry from X 1 to X 2 extends to a self-isometry of X. This property was first considered by Birkhoff [15], and of course differs from the more common usage of the terminology of a homogeneous space G∕H, whose study by Bochner was mentioned above.
- 3.
This is connected to semi-algebraic geometry and to Hilbert’s seventeenth problem: recall the famous result of Motzkin that there are non-negative polynomials on \(\mathbb {R}^d\) that are not sums of squares, such as x 4 y 2 + x 2 y 4 − 3x 2 y 2 + 1. Such phenomena have been studied in several settings, including polytopes (by Farkas, Handelman, and Pólya) and more general semi-algebraic sets (by Putinar, Schmüdgen, Stengel, Vasilescu, and others).
References
N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A.B. Goncharov, A. Postnikov, J. Trnka. Scattering amplitudes and the positive Grassmannian (2012). Preprint. Available at http://arxiv.org/abs/1212.5605
V.S. Barbosa, V.A. Menegatto, Strictly positive definite kernels on compact two-point homogeneous spaces. Math. Inequal. Appl. 19(2), 743–756 (2016)
V.S. Barbosa, V.A. Menegatto, Strict positive definiteness on products of compact two-point homogeneous spaces. Integr. Transf. Spec. Funct. 28(1), 56–73 (2017)
R.K. Beatson, W. zu Castell, Dimension hopping and families of strictly positive definite zonal basis functions on spheres. J. Approx. Theory 221(C), 22–37 (2017)
R.K. Beatson, W. zu Castell, Y. Xu, A Pólya criterion for (strict) positive-definiteness on the sphere. IMA J. Numer. Anal. 34(2), 550–568 (2014)
A. Belton, D. Guillot, A. Khare, M. Putinar, Matrix positivity preservers in fixed dimension. I. Adv. Math. 298, 325–368 (2016)
A. Belton, D. Guillot, A. Khare, M. Putinar, Moment-sequence transforms (2016). Preprint. Available at http://arxiv.org/abs/1610.05740
A. Belton, D. Guillot, A. Khare, M. Putinar, Total-positivity preservers (2017). Preprint. Available at http://arxiv.org/abs/1711.10468
A. Belton, D. Guillot, A. Khare, M. Putinar, A panorama of positivity (2018). Preprint. Available at http://arxiv.org/abs/1812.05482
A. Belton, D. Guillot, A. Khare, M. Putinar, A panorama of positivity. II: fixed dimension, in Complex Analysis and Spectral Theory: Thomas Ransford Festschrift, ed. by J. Mashreghi. CRM Proceedings and Lecture Notes Series (American Mathematical Society, Providence, to appear)
C. Berg, E. Porcu, From Schoenberg coefficients to Schoenberg functions. Constr. Approx. 45(2), 217–241 (2017)
C. Berg, J.P.R. Christensen, P. Ressel, Positive definite functions on abelian semigroups. Math. Ann. 223(3), 253–274 (1976)
C. Berg, A.P. Peron, E. Porcu, Schoenberg’s theorem for real and complex Hilbert spheres revisited. J. Approx. Theory 228, 58–78 (2018)
S. Bernstein, Sur les fonctions absolument monotones. Acta Math. 52(1), 1–66 (1929)
G. Birkhoff, Metric foundations of geometry. I. Trans. Am. Math. Soc. 55, 465–492 (1944)
L.M. Blumenthal, Theory and Applications of Distance Geometry, 2nd edn. (Chelsea Publishing Co., Bronx, 1970)
R.P. Boas, Jr., D.V. Widder, Functions with positive differences. Duke Math. J. 7(1), 496–503 (1940)
S. Bochner, Monotone Funktionen, Stieltjessche Integrale und harmonische Analyse. Math. Ann. 108(1), 378–410 (1933)
S. Bochner, Hilbert distances and positive definite functions. Ann. Math. 42(3), 647–656 (1941)
S. Bochner, Harmonic Analysis and the Theory of Probability (University of California Press, Berkeley, 1955)
R.N. Bonfim, J.C. Guella, V.A. Menegatto, Strictly positive definite functions on compact two-point homogeneous spaces: the product alternative. SIGMA Symmetry Integrability Geom. Methods Appl. 14, 112 (2018)
F. Brenti, Unimodal, log-concave and Pólya frequency sequences in combinatorics. Mem. Am. Math. Soc. 81(413), viii+106 (1989)
D. Chen, V.A. Menegatto, X. Sun, A necessary and sufficient condition for strictly positive definite functions on spheres. Proc. Am. Math. Soc. 131(9), 2733–2740 (2003)
J.P.R. Christensen, P. Ressel, Functions operating on positive definite matrices and a theorem of Schoenberg. Trans. Am. Math. Soc. 243, 89–95 (1978)
H. Cohn, Y. Zhao, Sphere packing bounds via spherical codes. Duke Math. J. 163(10), 1965–2002 (2014)
J. Dattorro, Equality relating Euclidean distance cone to positive semidefinite cone. Linear Algebra Appl. 428(11–12), 2597–2600 (2008)
B. Efron, Increasing properties of Pólya frequency functions. Ann. Math. Stat. 36(1), 272–279 (1965)
J. Emonds, H. Führ, Strictly positive definite functions on compact abelian groups. Proc. Am. Math. Soc. 139(3), 1105–1113 (2011)
S.M. Fallat, C.R. Johnson, Totally Nonnegative Matrices. Princeton Series in Applied Mathematics (Princeton University Press, Princeton, 2011)
S.M. Fallat, C.R. Johnson, R.L. Smith, The general totally positive matrix completion problem with few unspecified entries. Electron. J. Linear Algebra 7, 1–20 (2000)
S.M. Fallat, C.R. Johnson, A.D. Sokal, Total positivity of sums, Hadamard products and Hadamard powers: results and counterexamples. Linear Algebra Appl. 520, 242–259 (2017)
M. Fekete, Über ein problem von Laguerre. Rend. Circ. Math. Palermo 34, 89–120 (1912)
C.H. FitzGerald, C.A. Micchelli, A. Pinkus, Functions that preserve families of positive semidefinite matrices. Linear Algebra Appl. 221, 83–102 (1995)
S. Fomin, A. Zelevinsky, Total positivity: tests and parametrizations. Math. Intell. 22(1), 23–33 (2000)
S. Fomin, A. Zelevinsky, Cluster algebras. I. Foundations. J. Am. Math. Soc. 15(2), 497–529 (2002)
F.R. Gantmacher, M.G. Krein, Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems, ed. by A. Eremenko, revised edn. (AMS Chelsea Publishing, New York, 2002)
M. Gasca, C.A. Micchelli (eds.), Total Positivity and its Applications. Mathematics and Its Applications, vol. 359 (Springer, Utrecht, 1996)
I.M. Gelfand, Normierte Ringe. Rec. Math. [Mat. Sbornik] N. S. 9(51), 3–24 (1941)
T. Gneiting, Strictly and non-strictly positive definite functions on spheres. Bernoulli 19(4), 1327–1349 (2013)
J.C. Guella, V.A. Menegatto, Strictly positive definite kernels on a product of spheres. J. Math. Anal. Appl. 435(1), 286–301 (2016)
J.C. Guella, V.A. Menegatto, Strictly positive definite kernels on the torus. Constr. Approx. 46(2), 271–284 (2017)
J.C. Guella, V.A. Menegatto, A.P. Peron, An extension of a theorem of Schoenberg to products of spheres. Banach J. Math. Anal. 10(4), 671–685 (2016)
J.C. Guella, V.A. Menegatto, A.P. Peron, Strictly positive definite kernels on a product of spheres II. SIGMA Symmetry Integrability Geom. Methods Appl. 12, 15 (2016)
J.C. Guella, V.A. Menegatto, A.P. Peron, Strictly positive definite kernels on a product of circles. Positivity 21(1), 329–342 (2017)
D. Guillot, B. Rajaratnam, Retaining positive definiteness in thresholded matrices. Linear Algebra Appl. 436(11), 4143–4160 (2012)
D. Guillot, B. Rajaratnam, Functions preserving positive definiteness for sparse matrices. Trans. Am. Math. Soc. 367(1), 627–649 (2015)
D. Guillot, A. Khare, B. Rajaratnam, Preserving positivity for rank-constrained matrices. Trans. Am. Math. Soc. 369(9), 6105–6145 (2017)
H. Helson, J.-P. Kahane, Y. Katznelson, W. Rudin, The functions which operate on Fourier transforms. Acta Math. 102(1–2), 135–157 (1959)
C.S. Herz, Fonctions opérant sur les fonctions définies-positives. Ann. Inst. Fourier (Grenoble) 13(1), 161–180 (1963)
R.A. Horn, The theory of infinitely divisible matrices and kernels. Trans. Am. Math. Soc. 136, 269–286 (1969)
G.J.O. Jameson, Counting zeros of generalised polynomials: descartes’ rule of signs and Laguerre’s extensions. Math. Gaz. 90(518), 223–234 (2006)
J.-P. Kahane, Sur un théorème de Wiener–Lévy. C. R. Acad. Sci. Paris 246, 1949–1951 (1958)
J.-P. Kahane, W. Rudin, Caractérisation des fonctions qui opèrent sur les coefficients de Fourier-Stieltjes. C. R. Acad. Sci. Paris 247, 773–775 (1958)
S. Karlin, Total Positivity, vol. I (Stanford University Press, Palo Alto, 1968)
S. Karlin, Y. Rinott, A generalized Cauchy–Binet formula and applications to total positivity and majorization. J. Multivar. Anal. 27(1), 284–299 (1988)
Y. Katznelson, Sur les fonctions opérant sur l’algèbre des séries de Fourier absolument convergentes. C. R. Acad. Sci. Paris 247, 404–406 (1958)
A. Khare, Smooth entrywise positivity preservers, a Horn–Loewner master theorem, and Schur polynomials (2018). Preprint. Available at http://arxiv.org/abs/1809.01823
A. Khare, T. Tao, On the sign patterns of entrywise positivity preservers in fixed dimension (2017). Preprint. Available at http://arxiv.org/abs/1708.05197
Y. Kodama, L. Williams, KP solitons and total positivity for the Grassmannian. Invent. Math. 198(3), 637–699 (2014)
L. Liberti, C. Lavor, N. Maculan, A. Mucherino, Euclidean distance geometry and applications. SIAM Rev. 56(1), 3–69 (2014)
L. Lorch, D.J. Newman, On the composition of completely monotonic functions and completely monotonic sequences and related questions. J. Lond. Math. Soc. 28(1), 31–45 (1983)
G. Lusztig, Introduction to total positivity, in Positivity in Lie Theory: Open Problems, ed. by J. Hilgert, J.D. Lawson, K.-H. Neeb, E.B. Vinberg. De Gruyter Expositions in Mathematics, vol. 26 (Walter de Gruyter & Co., Berlin, 1998), pp. 133–145
K. Menger, Untersuchungen über allgemeine Metrik. Math. Ann. 100(1), 75–163 (1928)
K. Menger, New foundation of euclidean geometry. Am. J. Math. 53(4), 721–745 (1931)
J. Møller, M. Nielsen, E. Porcu, E. Rubak, Determinantal point process models on the sphere. Bernoulli 24(2), 1171–1201 (2018)
O.R. Musin, The kissing number in four dimensions. Ann. Math. 168(1), 1–32 (2008)
O.R. Musin, Multivariate positive definite functions on spheres, in Discrete Geometry and Algebraic Combinatorics. Contemporary Mathematics, vol. 625 (American Mathematical Society, Providence, 2014), pp. 177–190
A. Pinkus, Strictly positive definite functions on a real inner product space. Adv. Comput. Math. 20(4), 263–271 (2004)
A. Pinkus, Totally Positive Matrices. Cambridge Tracts in Mathematics, vol. 181 (Cambridge University Press, Cambridge, 2010)
G. Pólya, G. Szegő, Aufgaben und Lehrsätze aus der Analysis. Band II: Funktionentheorie, Nullstellen, Polynome Determinanten, Zahlentheorie (Springer, Berlin, 1971)
E. Porcu, A. Alegria, R. Furrer, Modeling temporally evolving and spatially globally dependent data. Int. Stat. Rev. 86(2), 344–377 (2018)
A. Postnikov, D. Speyer, L. Williams, Matching polytopes, toric geometry, and the totally non-negative Grassmannian. J. Algebraic Combin. 30(2), 173–191 (2009)
M. Putinar, Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math. J. 42(3), 969–984 (1993)
A.W. Roberts, D.E. Varberg, Convex Functions. Pure and Applied Mathematics, vol. 57 (Academic, New York, 1973)
A.J. Rothman, E. Levina, J. Zhu, Generalized thresholding of large covariance matrices. J. Am. Stat. Assoc. 104(485), 177–186 (2009)
W. Rudin, Transformations des coefficients de Fourier. C. R. Acad. Sci. Paris 243, 638–640 (1956)
W. Rudin, Positive definite sequences and absolutely monotonic functions. Duke Math. J. 26(4), 617–622 (1959)
W. Rudin, Some theorems on Fourier coefficients. Proc. Am. Math. Soc. 10(6), 855–859 (1959)
W. Rudin, A strong converse of the Wiener-Levy theorem. Can. J. Math. 14(4), 694–701 (1962)
I.J. Schoenberg, Über variationsvermindernde lineare Transformationen. Math. Z. 32(1), 321–328 (1930)
I.J. Schoenberg, Remarks to Maurice Fréchet’s article “Sur la définition axiomatique d’une classe d’espace distanciés vectoriellement applicable sur l’espace de Hilbert”. Ann. Math. 36(3), 724–732 (1935)
I.J. Schoenberg, On certain metric spaces arising from Euclidean spaces by a change of metric and their imbedding in Hilbert space. Ann. Math. 38(4), 787–793 (1937)
I.J. Schoenberg, Metric spaces and completely monotone functions. Ann. Math. 39(4), 811–841 (1938)
I.J. Schoenberg, Metric spaces and positive definite functions. Trans. Am. Math. Soc. 44(3), 522–536 (1938)
I.J. Schoenberg, On metric arcs of vanishing Menger curvature. Ann. Math. 41(4), 715–726 (1940)
I.J. Schoenberg, Positive definite functions on spheres. Duke Math. J. 9(1), 96–108 (1942)
I.J. Schoenberg, On Pólya frequency functions. II. Variation-diminishing integral operators of the convolution type. Acta Sci. Math. Szeged 12, 97–106 (1950)
I.J. Schoenberg, On Pólya frequency functions. I. The totally positive functions and their Laplace transforms. J. Anal. Math. 1(1), 331–374 (1951)
I.J. Schoenberg, A.M. Whitney, On Pólya frequency functions. III. The positivity of translation determinants with an application to the interpolation problem by spline curves. Trans. Am. Math. Soc. 74(2), 246–259 (1953)
I. Schur, Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen. J. Reine Angew. Math. 140, 1–28 (1911)
I. Steinwart, On the influence of the kernel on the consistency of support vector machines. J. Mach. Learn. Res. 2(1), 67–93 (2002)
V.N. Vapnik, The nature of statistical learning theory, in Statistics for Engineering and Information Science, 2nd edn. (Springer, New York, 2000)
H.L. Vasudeva, Positive definite matrices and absolutely monotonic functions. Indian J. Pure Appl. Math. 10(7), 854–858 (1979)
J. von Neumann, I.J. Schoenberg, Fourier integrals and metric geometry. Trans. Am. Math. Soc. 50(2), 226–251 (1941)
H.-C. Wang, Two-point homogeneous spaces. Ann. Math. 55(1), 177–191 (1952)
H. Weyl, Harmonics on homogeneous manifolds. Ann. Math. 35(3), 486–499 (1934)
A.M. Whitney, A reduction theorem for totally positive matrices. J. Anal. Math. 2(1), 88–92 (1952)
Y. Xu, Positive definite functions on the unit sphere and integrals of Jacobi polynomials. Proc. Am. Math. Soc. 146(5), 2039–2048 (2018)
Y. Xu, E.W. Cheney, Strictly positive definite functions on spheres. Proc. Am. Math. Soc. 116(4), 977–981 (1992)
J. Ziegel, Convolution roots and differentiability of isotropic positive definite functions on spheres. Proc. Am. Math. Soc. 142(6), 2063–2077 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Belton, A., Guillot, D., Khare, A., Putinar, M. (2019). A Panorama of Positivity. I: Dimension Free. In: Aleman, A., Hedenmalm, H., Khavinson, D., Putinar, M. (eds) Analysis of Operators on Function Spaces. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-14640-5_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-14640-5_5
Published:
Publisher Name: Birkhäuser, Cham
Print ISBN: 978-3-030-14639-9
Online ISBN: 978-3-030-14640-5
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)