Innovating for Sustainable Agriculture

  • Willem van LaarhovenEmail author


Bioresources can be produced endlessly if nature is used with care. However, today’s farming involves linear chains of producers in which animal and mineral fertilizers, pesticides, and other materials are supplied externally with much energy use and pollution. In addition, large material losses to the environment are observed and residuals are inefficiently reused. Possibilities to enhance the circularity in the agricultural chain are addressed because it is a key factor in the development of sustainable agricultural practices.


  1. Balesdent J et al (2000) Relationship of soil organic matter dynamics to physical protection and tillage. Soil Tillage Res 53(3–4):215–230CrossRefGoogle Scholar
  2. Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84(1):11–18CrossRefGoogle Scholar
  3. Campbell B et al (2017) Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecol Soc 22(4):8CrossRefGoogle Scholar
  4. Cordell D, White S (2014) Life’s bottleneck: sustaining the world’s phosphorus for a food secure future. Ann Rev Env Resour 39:161–188Google Scholar
  5. de Boer IJM, van Ittersum MK (2018) Circularity in agricultural production. Animal production systems and Plant production systems. Wageningen University and ResearchGoogle Scholar
  6. de Goede DM (2014) Understanding robustness as an image of sustainable agriculture. PhD thesis, Wageningen University, Wageningen, NLGoogle Scholar
  7. de Roos APW et al (2011) Effects of genomic selection on genetic improvement, inbreeding, and merit of young versus proven bulls. J Dairy Sci 94:1559–1567CrossRefGoogle Scholar
  8. de Wolf K et al (2018) Verduurzaming samenwerking akkerbouw-veehouderij in Drenthe. WUR/Wageningen Plant Research, Rapport WPR-773Google Scholar
  9. Devries A (2013) Cow longevity economics: the cost benefit of keeping the cow in the herd. In: Proceedings from the Cow Longevity Conference 2013, Hamra farm, SwedenGoogle Scholar
  10. Dybzinski R et al (2008) Soil fertility increases with plant species diversity in a long-term biodiversity experiment. Oecologia 158: 85.
  11. Eggen A (2012) The development and application of genomic selection as a new breeding paradigm. Animal Front 2(1):10–15CrossRefGoogle Scholar
  12. Ellis JL et al (2007) Prediction of methane production from dairy and beef cattle. J Dairy Sci 90(7):3456–3466CrossRefGoogle Scholar
  13. Enyi BAC (2008) Effects of intercropping maize or sorghum with cowpeas, pigeon peas or beans. Faculty of Agriculture, Morogoro, W., Tanzania. Experimental Agriculture 9(1):83–90Google Scholar
  14. Fangou M et al (2016) Simulating potential growth in a relay-strip intercropping system: model description, calibration and testing. Centre for Crop Systems Analysis. Wageningen University, Wageningen, The NetherlandsGoogle Scholar
  15. Foley JA et al (2005) Global consequences of land use. Science 309(5734):570–574Google Scholar
  16. Gerber PJ et al (2013) Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities. Food and Agriculture Organisation of the United Nations (FAO)Google Scholar
  17. González-Recio O et al (2007) Inbreeding depression on Female fertility and calving ease in Spanish dairy cattle. J Dairy Sci 90(12):5744–5752CrossRefGoogle Scholar
  18. Hayes BJ et al (2009) Genomic selection in dairy cattle: progress an challenges. J Dairy Sci 92(2):433–443CrossRefGoogle Scholar
  19. Holster H et al (2013) KringloopWijzer, goed geborgd!? Annual Nutrient Cycling Assessment (ANCA), adequately assured!? Rapport 676 Wageningen University and ResearchGoogle Scholar
  20. Kalantari F et al (2017) A review of vertical farming technology: a guide for implementation of building integrated agriculture in cities. In: Advanced Engineering Forum, vol. 24 pp 76–91Google Scholar
  21. Kardos M et al (2018) Genomic consequences of intensive inbreeding in an isolated wolf population. Nat Ecol Evol 2:1Google Scholar
  22. Kosowska B (1992) The relationship between homozygosity level and animal physiology: iron content of plasma and whole blood as well as total iron binding capacity by transferrin (TIBC) in rats of various inbreeding coefficient. Biochem Genet 30(7/8)Google Scholar
  23. Leach K (2012) Assessing the sustainability of EU organic and low input dairy farms. ORC Bulletin Nr. 111-Winter 2012Google Scholar
  24. Maeder P et al (2002) Soil fertility and biodiversity in organic farming. Science 296(5573):1694–1697CrossRefGoogle Scholar
  25. Meiresonne L, Turkelboom F (2014) Biodiversiteit als basis voor ecosysteemdiensten in Vlaanderen. INBO.M.2014.1817081. Instituut voor natuur—en bosonderzoek. BrusselGoogle Scholar
  26. Miguel A et al (2003) Soil fertility management and insect pests: harmonizing soil and plant health in agroecosystems. Soil Tillage Res 72(2):203–2011CrossRefGoogle Scholar
  27. Moe PW, Tyrrell HF (1979) Methane production in dairy cows. J Dairy Sci 62(10):1583–1586CrossRefGoogle Scholar
  28. Nardali ET (2009) No-till farming: effects on soil, pros and cons and potential.
  29. Ngwira AR et al (2012) On-farm evaluation of yield and economic benefit of short term maize legume intercropping systems under conservation agriculture in Malawi. Field Crops Res 132:149–157CrossRefGoogle Scholar
  30. Noorduyn L, Sukkel W (2010) Klimaatverandering te lijf. Ekoland 30 (2010)1. ISSN 0926-9142—pp 18–19Google Scholar
  31. Norman D et al (1997) Defining and implementing sustainable agriculture (Kansas Sustainable Agriculture Series, Paper #1; Manhattan KS: Kansas Agricultural Experiment StationGoogle Scholar
  32. Parr JF et al (1990) Sustainable agriculture in the United States. In: Edwards CA et al (eds) Sustainable agricultural systems. Soil and Water Conservation SocietyGoogle Scholar
  33. Reytar K et al (2014) Indicators for a sustainable agriculture: a scoping analysis. World Resources Institute (WRI)Google Scholar
  34. Schils R (2012) 30 vragen en antwoorden over bodemvruchtbaarheid. Wageningen Universitiy and Research, AlterraGoogle Scholar
  35. Scholten M et al (2018) Technische briefing kringlooplandbouw. Notitie voor de vaste kamer commissie LNV. Wageningen University and ResearchGoogle Scholar
  36. Smith LA et al (1998) The effects of inbreeding on the lifetime performance of dairy cattle. J Dairy Sci 81:2729–2737CrossRefGoogle Scholar
  37. Soerenson AC et al (2005) Inbreeding in Danish dairy cattle breeds. J Dairy Sci 88(5):1865–1872CrossRefGoogle Scholar
  38. Sonessen AK et al (2012) Genomic selection requires genomic control of inbreeding. Genet Sel Evol 44(1):27CrossRefGoogle Scholar
  39. Spears S (2018) Advanced Engineering Forum Submitted: 2017-08-17, vol. 24, pp 76–91. ISSN: 2234-991X
  40. Spitters CJT, Aerts R (1983) Simulation of competition for light and water in crop weed associations. Aspects Appl Biol 4:467–484Google Scholar
  41. Springmann M et al (2018) Options for keeping the food system within environmental limits. Nature 562:519–525CrossRefGoogle Scholar
  42. Spruijt-Verkerke et al (2004) Duurzaamheid op biologische bedrijven. Publicatie PPR 328, Wageningen University and ResearchGoogle Scholar
  43. Steinfeld H, Gerber P (2010) Livestock production and the global environment. Consume less or produce better? Proc Nat Acad Sci PNAS 107(43):18237–18238.
  44. Su YZ et al (2006) Long-term effect of fertilizer and manure application on soil-carbon sequestration and soil fertility under the wheat–wheat–maize cropping system in northwest China. Nutr Cycl Agroecosyst 75:285.
  45. Tilman D et al (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379:718–720Google Scholar
  46. Vanraden PM, Sanders AH (2003) Economic merit of crossbred and purebred US dairy cattle. J Dairy Sci 86(3):1036–1044Google Scholar
  47. Wall DH, Knox MA (2014) Soil Biodiversity. Reference Module in Earth Systems and Environmental Sciences, pp 136–141Google Scholar
  48. Willig MR, Presley SJ (2018) Latitudinal gradients of biodiversity: theory and empirical patterns. In: Encyclopedia of the anthropoceneGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Sint-OedenrodeThe Netherlands

Personalised recommendations