Skip to main content

A Convolution Model for Prediction of Physiological Responses to Physical Exercises

  • Conference paper
  • First Online:
Book cover Sport Science Research and Technology Support (icSPORTS 2016, icSPORTS 2017)

Abstract

An analytical convolution-based model is used to predict a person’s physiological reaction to strain. Heart rate, oxygen uptake, and carbon dioxide output serve as physiological measures. Cycling ergometer tests of five male subjects are used to compare the proposed Convolution Model with a machine learning approach in form of a black box Wiener model. In these experiments, the Convolution Model yields smaller errors in prediction for all considered physiological measures. It performs very similar to other analytical models, but is based on only four parameters in its original form. A parameter reduction to one single degree of freedom is shown with comparable prediction accuracy and without significant loss of fitting accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    MAPE values of each prediction in experiment A.2 are compared to MAPE values of each prediction in experiment A.3 with a two-sample t-test at \(\alpha =0.05\). Null hypothesis that data of both experiments comes from normal distributions with equal means and equal but unknown variances is rejected with \(p<0.01\).

References

  1. Bai, E.W.: An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems. Automatica 34(3), 333–338 (1998)

    Article  MathSciNet  Google Scholar 

  2. Baig, D.E.Z., Su, H., Cheng, T.M., Savkin, A.V., Su, S.W., Celler, B.G.: Modeling of human heart rate response during walking, cycling and rowing. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2553–2556. IEEE (2010)

    Google Scholar 

  3. Barnett, A., Cerin, E., Vandelanotte, C., Matsumoto, A., Jenkins, D.: Validity of treadmill-and track-based individual calibration methods for estimating free-living walking speed and VO2 using the actigraph accelerometer. BMC Sport. Sci. Med. Rehabil. 7(1), 29 (2015)

    Article  Google Scholar 

  4. Billings, S., Fakhouri, S.: Identification of nonlinear systems using the Wiener model. Electron. Lett. 13(17), 502–504 (1977)

    Article  Google Scholar 

  5. Borresen, J., Lambert, M.I.: Autonomic control of heart rate during and after exercise. Sport. Med. 38(8), 633–646 (2008)

    Article  Google Scholar 

  6. Busso, T., Denis, C., Bonnefoy, R., Geyssant, A., Lacour, J.R.: Modeling of adaptations to physical training by using a recursive least squares algorithm. J. Appl. Physiol. 82(5), 1685–1693 (1997)

    Article  Google Scholar 

  7. Calvert, T.W., Banister, E.W., Savage, M.V., Bach, T.: A systems model of the effects of training on physical performance. IEEE Trans. Syst. Man Cybern. 6(2), 94–102 (1976)

    Article  Google Scholar 

  8. Cheng, T.M., Savkin, A.V., Celler, B.G., Wang, L., Su, S.W.: A nonlinear dynamic model for heart rate response to treadmill walking exercise. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2007, pp. 2988–2991. IEEE (2007)

    Google Scholar 

  9. Chinarro, D.: System Engineering Applied to Fuenmayor Karst Aquifer (San Julián de Banzo, Huesca) and Collins Glacier (King George Island, Antarctica). ST. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08858-7

    Book  Google Scholar 

  10. Eskinat, E., Johnson, S.H., Luyben, W.L.: Use of Hammerstein models in identification of nonlinear systems. AIChE J. 37(2), 255–268 (1991)

    Article  Google Scholar 

  11. Fitchett, M.: Predictability of VO2 max from submaximal cycle ergometer and bench stepping tests. Br. J. Sport. Med. 19(2), 85–88 (1985)

    Article  Google Scholar 

  12. Fudge, B.W., et al.: Estimation of oxygen uptake during fast running using accelerometry and heart rate. Med. Sci. Sport. Exerc. 39(1), 192–198 (2007)

    Article  Google Scholar 

  13. Füller, M., Meenakshi Sundaram, A., Ludwig, M., Asteroth, A., Prassler, E.: Modeling and predicting the human heart rate during running exercise. In: Helfert, M., Holzinger, A., Ziefle, M., Fred, A., O’Donoghue, J., Röcker, C. (eds.) Information and Communication Technologies for Ageing Well and e-Health. CCIS, vol. 578, pp. 106–125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27695-3_7

    Chapter  Google Scholar 

  14. Giri, F., Bai, E.W.: Block-Oriented Nonlinear System Identification, vol. 1. Springer, Heidelberg (2010). https://doi.org/10.1007/978-1-84996-513-2

    Book  MATH  Google Scholar 

  15. Gonzalez, A.A., Bertschinger, R., Brosda, F., Dahmen, T., Thumm, P., Saupe, D.: Modeling oxygen dynamics under variable work rate. In: Proceedings of the 3rd International Congress on Sport Sciences Research and Technology Support, pp. 198–207 (2015). https://doi.org/10.5220/0005607701980207

  16. Gonzalez, A.A., Bertschinger, R., Saupe, D.: Modeling VO2 and VCO2 with Hammerstein-Wiener models. In: Proceedings of the 4th International Congress on Sport Sciences Research and Technology Support (icSPORTS 2016) (2016)

    Google Scholar 

  17. Hadjili, M.L., Kara, K.: Modelling and control using Takagi-Sugeno fuzzy models. In: 2011 Saudi International Electronics, Communications and Photonics Conference (SIECPC), pp. 1–6. IEEE (2011)

    Google Scholar 

  18. Hunter, I.W., Korenberg, M.: The identification of nonlinear biological systems: Wiener and Hammerstein cascade models. Biol. Cybern. 55(2), 135–144 (1986)

    MathSciNet  MATH  Google Scholar 

  19. Lehmann, M., Foster, C., Keul, J.: Overtraining in endurance athletes: a brief review. Med. Sci. Sports Exerc. 25(7), 854–862 (1993)

    Article  Google Scholar 

  20. Ludwig, M., Grohganz, H.G., Asteroth, A.: A convolution model for heart rate prediction in physical exercise. In: Proceedings of the 4th International Congress on Sport Sciences Research and Technology Support (icSPORTS 2016), pp. 157–164 (2016)

    Google Scholar 

  21. Ludwig, M., Sundaram, A.M., Füller, M., Asteroth, A., Prassler, E.: On modeling the cardiovascular system and predicting the human heart rate under strain. In: Proceedings of the 1st International Conference on Information and Communication Technologies for Ageing Well and e-Health (ICT4AgingWell), pp. 106–117 (2015). https://doi.org/10.5220/0005449001060117

  22. MacKay, D.J.: Information Theory, Inference and Learning Algorithms. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  23. Martin, A., Bubb, W., Howley, E.: Predicting oxygen consumption during level walking at speeds of 80 to 130 meters per minute. Med. Sci. Sport. Exerc. 15(2), 146 (1983)

    Article  Google Scholar 

  24. Mohammad, S., Guerra, T.M., Grobois, J.M., Hecquet, B.: Heart rate control during cycling exercise using Takagi-Sugeno models. In: 18th IFAC World Congress, Milano (Italy), pp. 12783–12788 (2011)

    Google Scholar 

  25. Mohammad, S., Guerra, T.M., Grobois, J.M., Hecquet, B.: Heart rate modeling and robust control during cycling exercise. In: FUZZ-IEEE, pp. 1–8 (2012)

    Google Scholar 

  26. Morgan, D.W., et al.: Prediction of the aerobic demand of walking in children. Med. Sci. Sport. Exerc. 34(12), 2097–2102 (2002)

    Article  Google Scholar 

  27. Narendra, K., Gallman, P.: An iterative method for the identification of nonlinear systems using a Hammerstein model. IEEE Trans. Autom. Control 11(3), 546–550 (1966)

    Article  Google Scholar 

  28. Paradiso, M., Pietrosanti, S., Scalzi, S., Tomei, P., Verrelli, C.M.: Experimental heart rate regulation in cycle-ergometer exercises. IEEE Trans. Biomed. Eng. 60(1), 135–139 (2013)

    Article  Google Scholar 

  29. Smith, L.L.: Overtraining, excessive exercise, and altered immunity. Sports Med. 33(5), 347–364 (2003)

    Article  Google Scholar 

  30. Su, S.W., et al.: Optimizing heart rate regulation for safe exercise. Ann. Biomed. Eng. 38(3), 758–768 (2010)

    Article  Google Scholar 

  31. Su, S.W., Wang, L., Celler, B.G., Savkin, A.V., Guo, Y.: Identification and control for heart rate regulation during treadmill exercise. IEEE Trans. Biomed. Eng. 54(7), 1238–1246 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank Alexander Artiga Gonzalez and the research group around Dietmar Saupe from University of Konstanz, Germany, for providing the data set used in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melanie Ludwig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ludwig, M., Grohganz, H.G., Asteroth, A. (2019). A Convolution Model for Prediction of Physiological Responses to Physical Exercises. In: Cabri, J., Pezarat-Correia, P., Vilas-Boas, J. (eds) Sport Science Research and Technology Support. icSPORTS icSPORTS 2016 2017. Communications in Computer and Information Science, vol 975. Springer, Cham. https://doi.org/10.1007/978-3-030-14526-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14526-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14525-5

  • Online ISBN: 978-3-030-14526-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics