Skip to main content

Multi-level Memristive Memory for Neural Networks

  • Chapter
  • First Online:
Deep Learning Classifiers with Memristive Networks

Abstract

Analog memory is of great importance in neuromorphic engineering as it enables scalable neural network design and energy efficient implementation of computationally expensive operations. With the advent of memristors, the realization of the analog memory became possible due to the intrinsic properties of memristors such as nanoscale size, non-volatility, and energy efficiency. In hardware implementations of neural networks, memristors store the values of synaptic weights and operate similarly to the synapses that are reinforced with the application of external stimuli. Memristors that are ideally continuum memories, currently are at the early stage of the development, which causes several issues in neuromorphic circuit design. Device level and architecture level issues force memory engineers to approach memristive memory design in different ways. In this chapter device-level problems: restricted number of resistance states, stochastic switching and architecture level problem: sneak paths will be discussed, and their state of the art solutions will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amatllé i Llucià E (2017) Design of a multi-level memory cell with new emerging non-volatile memristive technology. B.S. thesis, Universitat Politècnica de Catalunya

    Google Scholar 

  2. Ascoli A, Tetzlaff R, Menzal S (2018) Exploring the dynamics of real-world memristors on the basis of circuit theoretic model predictions. IEEE Circuits Syst Mag 18(2):48–76

    Article  Google Scholar 

  3. Cho B, Kim TW, Song S, Ji Y, Jo M, Hwang H, Jung GY, Lee T (2010) Rewritable switching of one diode-one resistor nonvolatile organic memory devices. Adv Mater 22(11):1228–1232

    Article  Google Scholar 

  4. Chua L (1971) Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5):507–519

    Article  Google Scholar 

  5. Chua L (2011) Resistance switching memories are memristors. Appl. Phys. A 102(4):765–783

    Article  Google Scholar 

  6. Deng Y, Huang P, Chen B, Yang X, Gao B, Wang J, Zeng L, Du G, Kang J, Liu X (2013) Rram crossbar array with cell selection device: A device and circuit interaction study. IEEE Trans. Electron Devices 60(2):719–726

    Article  Google Scholar 

  7. Fei W, Yu H, Zhang W, Yeo KS (2012) Design exploration of hybrid cmos and memristor circuit by new modified nodal analysis. IEEE Trans Very Large Scale Integr (VLSI) Syst 20(6), 1012–1025

    Article  Google Scholar 

  8. Hasan R, Taha TM, Yakopcic C (2017) On-chip training of memristor crossbar based multi-layer neural networks. Microelectron J 66:31–40

    Article  Google Scholar 

  9. Hu M, Strachan JP, Li Z, Grafals EM, Davila N, Graves C, Lam S, Ge N, Yang JJ, Williams RS (2016) Dot-product engine for neuromorphic computing: programming 1t1m crossbar to accelerate matrix-vector multiplication. In: Proceedings of the 53rd annual design automation conference. ACM (2016), p. 19

    Google Scholar 

  10. Hu S, Wu S, Jia W, Yu Q, Deng L, Fu YQ, Liu Y, Chen TP (2014) Review of nanostructured resistive switching memristor and its applications. Nanosci Nanotechnol Lett 6(9):729–757

    Article  Google Scholar 

  11. Irmanova A, James AP (2017) Multi-level memristive memory with resistive networks. In: 2017 IEEE Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (PrimeAsia). IEEE, pp. 69–72

    Google Scholar 

  12. Jo SH, Kim KH, Lu W (2009) High-density crossbar arrays based on a si memristive system. Nano Lett 9(2):870–874

    Article  Google Scholar 

  13. Kim H, Sah MP, Yang C, Chua LO (2010) Memristor-based multilevel memory. In: 2010 12th international workshop on Cellular nanoscale networks and their applications (CNNA). IEEE, pp 1–6

    Google Scholar 

  14. Kim KH, Gaba S, Wheeler D, Cruz-Albrecht JM, Hussain T, Srinivasa N, Lu W (2011) A functional hybrid memristor crossbar-array/cmos system for data storage and neuromorphic applications. Nano Lett 12(1):389–395

    Article  Google Scholar 

  15. Kim S, Jeong HY, Kim SK, Choi SY, Lee KJ (2011) Flexible memristive memory array on plastic substrates. Nano Lett 11(12):5438–5442

    Article  Google Scholar 

  16. Krestinskaya O, James AP, Chua LO (2018) Neuro-memristive circuits for edge computing: A review. arXiv:1807.00962

    Google Scholar 

  17. Kuzum D, Jeyasingh RG, Lee B, Wong HSP (2011) Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Lett 12(5):2179–2186

    Article  Google Scholar 

  18. Lastras-Montaño MA, Cheng KT (2018) Resistive random-access memory based on ratioed memristors. Nat Electron 1(8):466

    Article  Google Scholar 

  19. Lastras-Montano MA, Ghofrani A, Cheng KT (2015) Architecting energy efficient crossbar-based memristive random-access memories. In: 2015 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH). IEEE, pp 1–6

    Google Scholar 

  20. Leon C (2015) Everything you wish to know about memristors but are afraid to ask. Radioengineering 24(2):319

    Article  Google Scholar 

  21. Li Y, Zhou YX, Xu L, Lu K, Wang ZR, Duan N, Jiang L, Cheng L, Chang TC, Chang KC et al (2016) Realization of functional complete stateful boolean logic in memristive crossbar. ACS Appl Mater Interfaces 8(50):34559–34567

    Article  Google Scholar 

  22. Manem H, Rose GS, He X, Wang W (2010) Design considerations for variation tolerant multilevel cmos/nano memristor memory. In: Proceedings of the 20th symposium on Great lakes symposium on VLSI. ACM, pp 287–292

    Google Scholar 

  23. Naous R, Al-Shedivat M, Salama KN (2016) Stochasticity modeling in memristors. IEEE Trans Nanotechnol 15(1):15–28

    Article  Google Scholar 

  24. Prezioso M, Merrikh-Bayat F, Hoskins B, Adam G, Likharev KK, Strukov DB (2015) Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521(7550):61

    Article  Google Scholar 

  25. Rose, G.S.: Overview: Memristive devices, circuits and systems. In: Proceedings of 2010 IEEE international symposium on circuits and systems (ISCAS). IEEE, pp 1955–1958 (2010)

    Google Scholar 

  26. Shaarawy N, Emara A, El-Naggar AM, Elbtity ME, Ghoneima M, Radwan AG (2018) Design and analysis of 2t2m hybrid cmos-memristor based rram. Microelectron J 73:75–85

    Article  Google Scholar 

  27. Snider G, Kuekes P, Williams RS (2004) Cmos-like logic in defective, nanoscale crossbars. Nanotechnology 15(8):881

    Article  Google Scholar 

  28. Soni R, Meuffels P, Staikov G, Weng R, Kügeler C, Petraru, A., Hambe, M., Waser, R., Kohlstedt, H.: On the stochastic nature of resistive switching in cu doped ge0. 3se0. 7 based memory devices. Journal of applied physics 110(5), 054509 (2011)

    Article  Google Scholar 

  29. Strukov DB, Snider GS, Stewart DR, Williams RS (2008) The missing memristor found. Nature 453(7191):80

    Article  Google Scholar 

  30. Truong SN, Ham SJ, Min KS (2014) Neuromorphic crossbar circuit with nanoscale filamentary-switching binary memristors for speech recognition. Nanoscale Res Lett 9(1):629

    Article  Google Scholar 

  31. Wang C, He W, Tong Y, Zhang Y, Huang K, Song L, Zhong S, Ganeshkumar R, Zhao R (2017) Memristive devices with highly repeatable analog states boosted by graphene quantum dots. Small 13(20):1603435

    Article  Google Scholar 

  32. Wang X, Li S, Liu H, Zeng Z (2018) A compact scheme of reading and writing for memristor-based multivalued memory. IEEE Trans Comput-Aided Des Integr Circuits Syst 37(7):1505–1509

    Article  Google Scholar 

  33. Yanagida T, Nagashima K, Oka K, Kanai M, Klamchuen A, Park BH, Kawai T (2013) Scaling effect on unipolar and bipolar resistive switching of metal oxides. Sci Rep 3:1657

    Article  Google Scholar 

  34. Yang JJ, Zhang MX, Strachan JP, Miao F, Pickett MD, Kelley RD, Medeiros-Ribeiro G, Williams RS (2010) High switching endurance in tao x memristive devices. Appl Phys Lett 97(23):232102

    Article  Google Scholar 

  35. Zidan MA, Fahmy HAH, Hussain MM, Salama KN (2013) Memristor-based memory: the sneak paths problem and solutions. Microelectron J 44(2):176–183

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Pappachen James .

Editor information

Editors and Affiliations

Chapter Highlights

Chapter Highlights

  • An analog memory cell in crossbar circuits store synaptic weights of NN.

  • In the ideal case, an analog memory cell based on single memristor in crossbar circuits store infinite synaptic weight values.

  • In practice memristors store discrete resistive states. A memory cell consisting of a combination of parallel or series memristors can be used to increase stored resistive levels.

  • During the inference stage of neural networks, reading voltages are used to avoid resistive switching.

  • During the training stage of neural networks, programming voltages are used to force the resistive switching.

  • The sneak path takes place in memristive crossbar arrays complicating inference and training processes of the system. Possible sneak path solutions suitable for developing a multilevel memory include designing unfolded architecture, diode gating, and transistor gating.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Irmanova, A., Myrzakhmet, S., James, A.P. (2020). Multi-level Memristive Memory for Neural Networks. In: James, A. (eds) Deep Learning Classifiers with Memristive Networks. Modeling and Optimization in Science and Technologies, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-030-14524-8_8

Download citation

Publish with us

Policies and ethics