Biochemical Strategies for Enhanced Biofuel Production

  • Yogita Lugani
  • Balwinder Singh Sooch
  • Sachin KumarEmail author
Part of the Biofuel and Biorefinery Technologies book series (BBT, volume 10)


The socio-environmental issues such as increasing world population, globalization, environmental concerns, and energy security lead to utmost need for utilizing biodegradable agricultural wastes for the production of biofuels. Therefore, the focus is to deploy technologies for utilization of renewable lignocellulosic sources, which are available worldwide in copious amounts, for the production of second-generation biofuels. Lignocellulosic ethanol is considered as one of the environmentally-friendly alternatives to fossil fuel, which is produced by exploiting lignocellulosic biomass using different techniques. There are three major steps involved in bioethanol production: pretreatment, enzymatic saccharification, and fermentation. Pretreatment allows increasing surface area and getting accessible cellulosic material to hydrolytic enzymes; this is further hydrolyzed to fermentable pentose and hexose sugars through enzymatic saccharification. The overall economy of the process depends on pretreatment, enzymatic saccharification, and utilization of both pentose and hexose sugars to ethanol. The integrated fermentation approaches result in simultaneous saccharification and fermentation to enhance bioethanol yield and productivity. The development of industrial strains for bioethanol production is another challenge to utilize both pentose and hexose sugars, and withstand under adverse environmental conditions, i.e., high ethanol and inhibitors tolerance, and tolerance to high temperature and low pH. The present chapter focuses on pretreatment, enzymatic and co-fermentation strategies, integrated approaches, and optimization on process parameters to enhance the lignocellulosic ethanol yield for sustainable biofuel production.


Bioethanol Biofuels Enzymatic saccharification Fermentation Lignocellulosic biomass Pretreatment 



The authors are thankful to Department of Biotechnology, Punjabi University, Patiala, India, and Bhai Kahn Singh Nabha Library, Punjabi University, Patiala, India, for providing access to technical and scientific literature. The authors also acknowledge the support from Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, India.


  1. Aden A, Foust T (2009) Techno-economic analysis of the dilute sulfuric acid and enzymatic hydrolysis process for the conversion of corn stover to ethanol. Cellul 16(4):535–545CrossRefGoogle Scholar
  2. Ajbar AH, Ali E (2017) Study of advanced control of ethanol production through continuous fermentation. J King South Uni-Eng Sci 29(1):1–11CrossRefGoogle Scholar
  3. Amin FR, Khalid H, Zhang H, Rahman S, Zhang R, Liu G, Chen C (2017) Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Exp 7:1–12CrossRefGoogle Scholar
  4. Ammar JB, Lanoiselle JL, Lebovka NI, Hecke E, Vorobiev E (2011) Impact of a pulsed electric field on damage of plant tissues: effects of cell size and tissue electrical conductivity. J Food Sci 76(1):90–97CrossRefGoogle Scholar
  5. Ask M, Olofsson T, Felice D, Ruohonen L, Penttila M, Liden G, Olsson L (2012) Challenges in enzymatic hydrolysis and fermentation of pretreated Arundo donax revealed by a comparison between SHF and SSF. Process Biochem 47(10):1452–1459CrossRefGoogle Scholar
  6. Azhar SHM, Abdulla R, Jambo SA, Marbawi H, Gansau JA, Faik AAM, Rodrigues KF (2017) Yeasts in sustainable bioethanol production: a review. Biochem Biophy Rep 10:52–61Google Scholar
  7. Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Conserv Manag 52(2):858–875CrossRefGoogle Scholar
  8. Banerjee S, Sen R, Pandey RA, Chakrabarti T, Satpute D, Giri BS, Mudliar S (2009) Evaluation of wet air oxidation as a pretreatment strategy for bioethanol production from rice husk and process optimization. Biomass Bioenergy 33(12):1680–1686CrossRefGoogle Scholar
  9. Barakat A, Laigle CM, Solhy A, Arancon RAD, De Vries H, Luque R (2014) Mechanical pretreatments of lignocellulosic biomass: towards facile and environmentally sound technologies for biofuels production. RCS Adv 4(89):48109–48127Google Scholar
  10. Barba FJ, Parniakov O, Pereira SA, Wiktor A, Grimi N, Boussetta N, Saraiva JA, Raso J, Belloso OM, Rajchert DW, Lebovka N, Vorobiev E (2015) Current applications and new opportunities for the use of pulsed electric fields in food science and industry. Food Res Int 77(4):773–798CrossRefGoogle Scholar
  11. BC International Corporation, 980 Washington Street, Dedham, MA 02026. Accessed 10 June 2018
  12. Beukes N, Pletschke BI (2010) Effect of lime pre-treatment on the synergistic hydrolysis of sugarcane bagasse by hemicelluloses. Bioresour Technol 101(12):4472–4478CrossRefGoogle Scholar
  13. Bharti, Chauhan M (2016) Bioethanol production using Saccharomyces cerevisiae with different perspectives: substrate, growth variables, inhibitor reduction and immobilization. Ferment Technol 5(2):1–4Google Scholar
  14. Bhatt SM, Shilpa (2014) Bioethanol production from economical agro waste (groundnut shell) in SSF mode. Res J Pharm Biol Chem Sci 5(6):1210–1218Google Scholar
  15. Binod P, Sindhu R, Singhania RR, Vikram S, Devi L, Nagalakshmi S, Kurien N, Sukumaran RK, Pandey A (2010) Bioethanol production from rice: an overview. Bioresour Technol 101(13):4767–4774CrossRefGoogle Scholar
  16. Borbala E, Mats G, Guido Z (2013) Simultaneous saccharification and co-fermentation of whole wheat in integrated ethanol production. Biomass Bioenergy 56:506–514CrossRefGoogle Scholar
  17. Canilha L, Chandel AK, Milessi TSS, Antunes FAF, Freitas WLC, Felipe MGA, Silva SS (2012) Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification and ethanol fermentation. J Biomed Biotechnol 2012:1–15CrossRefGoogle Scholar
  18. Capolupo L, Faraco V (2016) Green methods of lignocellulose pretreatment for biorefinery development. Appl Microbiol Biotechnol 100(22):9451–9467CrossRefGoogle Scholar
  19. Cavalheiro AA, Monteiro G (2013) Solving ethanol production problems with genetically modified yeast strains. Braz J Microbiol 44(3):665–671CrossRefGoogle Scholar
  20. Chandel AK, Chan ES, Rudravaram R, Narasu ML, Rao LV, Ravindra P (2007) Economics and environmental impact of bioethanol production technologies: an appraisal. Biotechnol Mol Biol Rev 2(1):14–32Google Scholar
  21. Chang YH, Chang KS, Chen CY, Hsu CL, Chang TC, Jang HD (2018) Enhancement of the efficiency of bioethanol production by Saccharomyces cerevisiae via gradually batch-wise and fed-batch increasing the glucose concentration. Ferment 4(2):1–12CrossRefGoogle Scholar
  22. Chaturvedi V, Verma P (2013) An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. 3 Biotech 3(5):415–431Google Scholar
  23. Cheng NG, Hasan M, Kumoro AC (2009) Production of ethanol by fed-batch fermentation. Pertanika J Sci Technol 17(2):399–408Google Scholar
  24. Choi GW, Kang HW, Moon SK (2009) Repeated batch fermentation using flocculent hybrid Saccharomyces cerevisiae CHFY0321 for efficient production of bioethanol. Appl Micribiol Biotechnol 84(2):261–269CrossRefGoogle Scholar
  25. Choi GW, Um HJ, Kim M, Kim Y, Kang HW, Chung BW, Kim YH (2010) Isolation and characterization of ethanol-producing Schizosaccharomyces pombe CHFY0201. J Microbiol Biotechnol 20(4):828–834Google Scholar
  26. Chovau S, Degrauwe D, Bruggen BV (2013) Critical analysis of techno-economic estimates for the production cost of lignocellulosic bioethanol. Renew Sust Energ Rev 26:307–321CrossRefGoogle Scholar
  27. Crawford JT, Shan CW, Budsberg E, Morgan H, Bura R, Gustafson R (2016) Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: techno-economic assessment. Biotechnol Biofuels 23:1–16Google Scholar
  28. Cruz JM, Dominguez JM, Dominguez H, Parajo JC (2002) Preparation of fermentation media from agricultural wastes and their bioconversion into xylitol. Food Biotechnol 14(1–2):79–97Google Scholar
  29. Cubero MTG, Benito GG, Indacoechea I, Coca M, Bolado S (2009) Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw. Bioresour Technol 100(4):1608–1613CrossRefGoogle Scholar
  30. Dashtban M, Schraft H, Qin W (2009) Fungal bioconversion of lignocellulosic residues; opportunities and perspectives. Int J Biol Sci 5(6):578–595CrossRefGoogle Scholar
  31. Den W, Sharma VK, Lee M, Nadadur G, Varma RS (2018) Lignocellulosic biomass transformations via greener oxidative pretreatment processes: access to energy and value added chemicals. Front Chem 6:1–23CrossRefGoogle Scholar
  32. Deswal D, Gupta R, Nandal P, Kuhad RC (2014) Fungal pretreatment improves amenability of lignocellulosic material for its saccharification to sugars. Carbohydr Polym 99:264–269CrossRefGoogle Scholar
  33. Dhiman SS, David A, Braband VW, Hussein A, Sani RK (2017) Improved bioethanol production from corn stover: role of enzymes, inducers and simultaneous product recovery. Appl Energy 208:1420–1429CrossRefGoogle Scholar
  34. Divate NR, Chen GH, Divate RD, Ou BR, Chung YC (2017) Metabolic engineering of Saccharomyces cerevisiae for improvement in stresses tolerance. Bioeng 8(5):524–535Google Scholar
  35. Dogan A, Demirci S, Aytekin AO, Sahin F (2014) Improvements of tolerance to stress conditions by genetic engineering in Saccharomyces cerevisiae during ethanol production. Appl Biochem Biotechnol 174(1):28–42CrossRefGoogle Scholar
  36. Dong C, Wang Y, Zhang H, Leu SY (2018) Feasibility of high concentration cellulosic bioethanol production from undetoxified whole Monterey pine slurry. Bioresour Technol 250:102–109CrossRefGoogle Scholar
  37. Dutta K, Daverey A, Lin JG (2014) Evolution retrospective for alternative fuels: first to fourth generation. Renew Energy 69:114–122CrossRefGoogle Scholar
  38. Dyk JS, Pletschke BI (2012) A review of lignocellulosic bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-Factors affecting enzymes, conversion and synergy. Biotechnol Adv 30(6):1458–1480CrossRefGoogle Scholar
  39. Eggeman T, Elander RT (2005) Process and economic analysis of pretreatment technologies. Bioresour Technol 96(18):2019–2025CrossRefGoogle Scholar
  40. Erdei B, Franko B, Galbe M, Zacchi G (2012) Separate hydrolysis and co-fermentation for improved xylose utilization in integrated ethanol production from wheat meal and wheat straw. Biotechnol Biofuels 5:1–12CrossRefGoogle Scholar
  41. Gautam SP, Bundela PS, Pandey AK, Khan J, Awasthi MK, Sarsaiya S (2011) Optimization for the production of cellulose enzyme from municipal solid waste residue by two novel cellulolytic fungi. Biotechnol Res Int 2011:1–8CrossRefGoogle Scholar
  42. Ge JP, Zhang LY, Ping WX, Zhang MY, Shen Y, Song G (2014) Genetically engineered Saccharomyces cerevisiae strain that can utilize both xylose and glucose for fermentation. Appl Mech Mater 448–453:1637–1643Google Scholar
  43. Gnansounou E (2010) Production and use of lignocellulosic bioethanol in Europe: current situation and perspectives. Bioresour Technol 101(13):4842–4850CrossRefGoogle Scholar
  44. Golaszewski J, Zelazna K, Karwowska A, Ziety EO (2012) Conceptual framework of bioethanol production from lignocellulose for agricultural profitability. Environ Biotechnol 8(1):15–27Google Scholar
  45. Gouvea BM, Torres C, Franca AS, Oliveira LS, Oliveira ES (2009) Feasibility of ethanol production from coffee husk. Biotechnol Lett 31(9):1315–1319CrossRefGoogle Scholar
  46. Grassick A, Murray P, Thompson R, Collins C, Byrnes L, Birrane G, Higgins T, Tuohy M (2004) Three-dimensional structure of a thermostable native cellobiohydrolase, CBH 1B and molecular characterization of the cel7 gene from the filamentous fungus, Talaromyces emersonii. Eur J Biochem 271(22):4495–4506CrossRefGoogle Scholar
  47. Gupta R, Lee YY (2009) Pretreatment of hybrid poplar by aqueous ammonia. Biotechnol Prog 25(2):357–364CrossRefGoogle Scholar
  48. Hagerdal BH, Karhumaa K, Fonseca C, Martins IS, Grauslund G (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74(5):937–953Google Scholar
  49. Hamelinck CN, Hooijdonk GV, Faaji APC (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28(4):384–410CrossRefGoogle Scholar
  50. Hasunuma T, Kondo A (2012) Development of yeast factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering. Biotechnol Adv 30(6):1207–1218CrossRefGoogle Scholar
  51. Ilmen M, Saloheimo A, Onnel M, Pentilla ME (1997) Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei. Appl Environ Microbiol 63(4):1298–1306Google Scholar
  52. Inoue H, Fujimoto S, Sakaki T (2016) Two-step hot compressed water treatment of douglas fir for efficient total sugar recovery by enzymatic hydrolysis. BioResources 11(2):5124–5137CrossRefGoogle Scholar
  53. Iogen Corporation, Marketing and Communications, 8 Colonnade Rd., Ottawa, ON, Canada. Accessed 10 June 2018
  54. Ivetic DZ, Omorjan RP, Dordevic TR, Antov MG (2017) The impact of ultrasound pretreatment on the enzymatic hydrolysis of cellulose from sugar beet shreds: modeling of the experimental results. Environ Prog Sustain Energy 36(4):1164–1172CrossRefGoogle Scholar
  55. Jain A, Chaurasia SP (2014) Bioethanol production in membrane bioreactor (MBR) system: a review. Int J Environ Res Dev 4(4):387–394Google Scholar
  56. Jeremic D, Goacher RE, Yan R, Karunakaran C, Master ER (2014) Direct and up-close views of plant cell walls show a leading role for lignin-modifying enzymes on ensuring xylanase. Biotechnol Biofuels 7(1):1–12CrossRefGoogle Scholar
  57. Jin M, Balan V, Gunawan C, Dale BE (2011) Consolidated bioprocessing (CBP) performance of Clostridium phytofermentans on AFEX-treated corn stover for ethanol production. Biotechnol Bioeng 108(6):1290–1297CrossRefGoogle Scholar
  58. Joshi B, Bhatt MR, Sharma D, Joshi J, Malla R, Sreerama L (2011) Lignocellulosic ethanol production: current practices and recent developments. Biotechnol Mol Biol Rev 6(8):172–182Google Scholar
  59. Junior MM, Batistote M, Cilli EM, Ernandes JR (2009) Sucrose fermentation by Brazilian ethanol production yeast in media containing structurally complex nitrogen sources. J Inst Brewing 115(3):191–197CrossRefGoogle Scholar
  60. Kamzon MA, Abderafi S, Bounahmidi T (2016) Promising bioethanol processes for developing a biorefinery in the Moroccan sugar industry. Int J Hydrogen Energy 41(45):20880–20896CrossRefGoogle Scholar
  61. Kang KE, Chung DP, Kim Y, Chung BW, Choi GW (2015) High titer ethanol production from simultaneous saccharification and fermentation using a continuous feeding system. Fuel 145:18–24CrossRefGoogle Scholar
  62. Kang Q, Appels L, Tan T, Dewil R (2014) Bioethanol from lignocellulosic biomass: current findings determine research priories. Sci World J 2014:1–13Google Scholar
  63. Kazi FK, Fortman JA, Anex RP, Hsu DD, Aden A, Dutta A, Kothandaraman G (2010) Techno-economic comparison of process technologies for biochemical ethanol production from corn stover. Fuel 89(1):20–28CrossRefGoogle Scholar
  64. Kefale A, Redi M, Asfaw A (2012) Potential of bioethanol production and optimization test from agricultural waste: the case of wet coffee processing waste pulp. Int J Renew Energy Res 2(3):446–450Google Scholar
  65. Kim D (2018) Physico-chemical conversion of lignocellulose: inhibitor effects and detoxification strategies: a mini review. Mol 23(2):1–21Google Scholar
  66. Kim KH, Tucker M, Nguyen Q (2005) Conversion of bark rich biomass mixture into fermentable sugars by two stage dilute acid catalyzed hydrolysis. Bioresour Technol 96(11):1249–1255CrossRefGoogle Scholar
  67. Ko JK, Jung JH, Altpeter F, Kannan B, Kim HE, Kim KH, Alper HS, Um Y, Lee SM (2018) Largely enhanced bioethanol production through the combined use of lignin-modified sugarcane and xylose fermenting yeast strain. Bioresour Technol 256:312–320CrossRefGoogle Scholar
  68. Koppolu V, Vasigala VKR (2016) Role of Escherichia coli in biofuel production. Microbiol Insights 9:29–35CrossRefGoogle Scholar
  69. Kricka W, Fitzpatrick J, Bond U (2014) Metabolic engineering of yeasts by heterogenous enzyme production for degradation of cellulose and hemicellulose from biomass: a perspective. Front Micribiol 5:1–11Google Scholar
  70. Kuhad RC, Gupta R, Khasa YP, Singh A (2010) Bioethanol production from Lantana camara (red sage): pretreatment, saccharification and fermentation. Bioresour Technol 101(21):8348–8354CrossRefGoogle Scholar
  71. Kumar D, Murthy GS (2013) Stochastic molecular model of enzymatic hydrolysis of cellulose for ethanol production. Biotechnol Biofuels 6(1):1–20CrossRefGoogle Scholar
  72. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729CrossRefGoogle Scholar
  73. Kurian JK, Nair GR, Hussain A, Raghavan GSV (2013) Feedstocks, logistics and pre-treatment processes for sustainable lignocellulosic biorefineries: a comprehensive review. Renew Sustain Energy Rev 25:205–219CrossRefGoogle Scholar
  74. Lali A (2016) Biofuels for India: what, when and how. Curr Sci 110(4):552–555CrossRefGoogle Scholar
  75. Lebovka NI, Bazhal MI, Vorobiev E (2000) Simulation and experimental investigation of food material breakage using pulsed electric field treatment. J Food Eng 44(4):213–223CrossRefGoogle Scholar
  76. Li C, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M, Vogel KP, Simmons BA, Singh S (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 101(13):4900–4906CrossRefGoogle Scholar
  77. Li C, Yoshimoto M, Fukunaga K, Nakao K (2007) Characterization and immobilization of liposome-bound cellulose for hydrolysis of insoluble cellulose. Bioresour Technol 98(7):1366–1372CrossRefGoogle Scholar
  78. Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69(6):627–642CrossRefGoogle Scholar
  79. Lin Y, Zhang W, Li C, Sakakibara K, Tanaka S (2012) Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742. Biomass Bioenergy 47:395–401CrossRefGoogle Scholar
  80. Littlejohns J, Rehmann L, Murdy R, Oo A, Neill S (2018) Current state and future prospects for liquid biofuels in Canada. Biofuel Res J 5(1):759–779CrossRefGoogle Scholar
  81. Liu ZH, Chen HZ (2016) Simultaneous saccharification and co-fermentation for improving the xylose utilization of steam explored corn stover at high solid loading. Bioresour Technol 201:15–26CrossRefGoogle Scholar
  82. Lugani Y, Sooch BS (2018) Insights into fungal xylose reductases and its applications in xylitol production. In: Kumar S, Dheeran P, Taherzadeh M, Khanal S (eds) Fungal biorefineries. Springer Nature, Switzerland, pp 121–144CrossRefGoogle Scholar
  83. Lukajtis R, Kucharska K, Holowacz I, Rybarczyk P, Wychodnik K, Slupek E, Nowak P, Kaminski M (2018) Comparison and optimization of saccharification conditions of alkaline pretreated triticale straw for acid and enzymatic hydrolysis followed by ethanol fermentation. Energ 11(3):1–24Google Scholar
  84. Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577CrossRefGoogle Scholar
  85. Lynd LR, Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16(5):577–583CrossRefGoogle Scholar
  86. Madadi M, Tu Y, Abbas A (2017) Recent status on enzymatic saccharification of lignocellulosic biomass for bioethanol production. Electron J Biol 13(2):135–143Google Scholar
  87. Marcuschamer DK, Popiel PO, Simmons BA, Blanch HW (2010) Technoeconomic analysis of biofuels: a wiki-based platform for lignocellulosic biorefineries. Biomass Bioenergy 34(12):1914–1921CrossRefGoogle Scholar
  88. Maurya DP, Singla A, Negi S (2015) An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech 5(5):597–609Google Scholar
  89. McEwen JT, Atsumi S (2012) Alternative biofuel production in non-natural hosts. Curr Opin Biotechnol 23(5):744–750CrossRefGoogle Scholar
  90. Menegol D, Scholl AL, Dillon AJP, Camassola M (2016) Influence of different chemical pretreatments of elephant grass (Pennisetum purpureum, Schum) used as a substrate for cellulose and xylanase production in submerged cultivation. Bioprocess Biosyst Eng 39(9):1455–1464CrossRefGoogle Scholar
  91. Meneses LR, Raud M, Orupold K, Kikas T (2017) Second-generation bioethanol production: a review of strategies for waste valorization. Agronomy Res 15(3):830–847Google Scholar
  92. Mirahmadi K, Kabir MM, Jeihanipour A, Karimi K, Taherzadeh M (2010) Alkaline pretreatment of spruce and birch to improve bioethanol and biogas production. BioResources 5(1):928–938Google Scholar
  93. Monavari S, Galbe M, Zacchi G (2009) Impact of impregnation time and chip size on sugar yield in pretreatment of softwood for ethanol production. Bioresour Technol 100(24):6312–6316CrossRefGoogle Scholar
  94. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686CrossRefGoogle Scholar
  95. Muktham R, Bhargava SK, Bankupalli S, Ball AS (2016) A review on 1st and 2nd generation bioethanol production-recent progress. J Sustain Bioenergy Sys 6(3):72–92CrossRefGoogle Scholar
  96. Mulakhudair AR, Hanotu J, Zimmerman W (2017) Exploiting ozonolysis-microbe synergy for biomass processing: application in lignocellulosic biomass pretreatment. Biomass Bioenergy 105:147–154CrossRefGoogle Scholar
  97. Mupondwa E, Li X, Tabil L, Sokhansanj S, Adapa P (2017) Status of Canada’s lignocellulosic ethanol: part I: pretreatment technologies. Renew Sust Energ Rev 72:178–190CrossRefGoogle Scholar
  98. Mussatto SI, Machado EMS, Carneiro LM, Teixeira JA (2012) Sugars metabolism and ethanol production by different yeast strains from coffee industry waste hydrolysates. Appl Energy 92:763–768CrossRefGoogle Scholar
  99. Mussatto SJ, Dragone G, Guimaraes PMR, Paulo J, Silva A, Carneiro LM, Roberto IC, Vicente A, Domingues L, Teixeira JA (2010) Technological trends, global market and challenges of bio-ethanol production. Biotechnol Adv 28(6):817–830CrossRefGoogle Scholar
  100. Myat L, Ryu GH (2016) Pretreatments and factors affecting saccharification and fermentation for lignocellulosic ethanol production. Cellulose Chem Technol 50(2):177–188Google Scholar
  101. Nikolic S, Mojovic L, Pejin D, Rakin M, Vucurovic V (2009) Improvement of ethanol fermentation of corn Semolina hydrolyzates with immobilized yeast by medium supplementation. Food Technol Biotechnol 47(1):83–89Google Scholar
  102. Nikolic S, Pejin J, Mojovic L (2016) Challenges in bioethanol production: utilization of cotton fabrics as a feedstock. Chem Ind Chem Eng Q 22(4):375–390CrossRefGoogle Scholar
  103. Nishimura H, Tan L, Kira N, Tomiyama S, Yamada K, Sun ZY, Tang YQ, Morimura S, Kida K (2017) Production of ethanol from a mixture of waste paper and kitchen waste via a process of successive liquefaction, pre-saccharification and simultaneous saccharification and fermentation. Waste Manag 67:86–94CrossRefGoogle Scholar
  104. Olofsson K, Wiman M, Liden G (2010) Controlled feeding of cellulose improves conversion of xylose in simultaneous saccharification and co-fermentation for bioethanol production. J Biotechnol 145(2):168–175CrossRefGoogle Scholar
  105. Olsson L, Hagerdal BH (1996) Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb Technol 18(5):312–331CrossRefGoogle Scholar
  106. Pale MM, Meli L, Doherty TV, Linhardt RJ, Dordick JS (2011) Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass. Biotechnol Bioeng 108(6):1229–1245CrossRefGoogle Scholar
  107. Pan X, Arato C, Gilkes N, Gregg D, Mabee W, Pye K, Xiao Z, Zhang X, Saddler J (2005) Biorefining of softwoods using ethanol organosolv pulping: preliminary evaluation of process streams for manufacture of fuel grade ethanol and co-products. Biotechnol Bioeng 90(4):473–481CrossRefGoogle Scholar
  108. Parambil LK, Sarkar D (2015) In silico analysis of bioethanol overproduction by genetically modified microorganisms in co-culture fermentation. Biotechnol Res Int 2015:1–11CrossRefGoogle Scholar
  109. Park I, Kim I, Kang K, Sohn H, Rhee I, Jin I, Jang H (2010) Cellulose ethanol production from waste newsprint by simultaneous saccharification and fermentation using Saccharomyces cerevisiae KNU5377. Proc Biochem 45(4):487–492CrossRefGoogle Scholar
  110. Perron OM, Colombari FM, Rossi JS, Moretti MMS, Bordignon SM, Nunes CC, Gomes E, Boscolo M, Silva R (2016) Ozonolysis combined with ultrasound as a pretreatment of sugarcane bagasse: effect of the enzyme saccharification and the physical and chemical characteristics of the substrate. Bioresour Technol 218:69–76CrossRefGoogle Scholar
  111. Phitsuwan P, Permsriburasuk C, Baramee S, Teeravivattanakit T, Ratanakhanokchai K (2017) Structural analysis of alkali pretreated rice straw for ethanol production. Int J Polymer Sci 2017:1–9CrossRefGoogle Scholar
  112. Pielhop T, Amgarten J, Rohr PR, Studer MH (2016) Steam explosion pretreatment of softwood: the effect of the explosive decompression on enzymatic digestibility. Biotechnol Biofuels 9:1–13CrossRefGoogle Scholar
  113. Planas OP, Ativeh HK, Phillips JR, Aichele CP, Mohammad S (2017) Process simulation of ethanol production from biomass gasification and syngas fermentation. Bioresour Technol 245:925–932CrossRefGoogle Scholar
  114. Qin L, Zhao X, Li WC, Zhu JQ, Liu L, Li BZ, Yuan YJ (2018) Process analysis and optimization of simultaneous saccharification and co-fermentation of ethylenediamine-pretreated corn stover for ethanol production. Biotechnol Biofuels 11:1–10CrossRefGoogle Scholar
  115. Qing Q, Yang B, Wyman CE (2010) Impact of surfactants on pretreatment of corn stover. Bioresour Technol 101(15):5941–5951CrossRefGoogle Scholar
  116. Rabelo SC, Filho RM, Costa AC (2009) Lime pretreatment of sugarcane bagasse for bioethanol production. Appl Biochem Biotechnol 153(1–3):139–150CrossRefGoogle Scholar
  117. Rabemanolontsoa H, Saka S (2016) Various pretreatments of lignocellulosics. Bioresour Technol 199:83–91CrossRefGoogle Scholar
  118. Raud M, Olt J, Kikas T (2016) N2 explosive decompression pretreatment of biomass for lignocellulosic ethanol production. Biomass Bioenergy 90:1–6CrossRefGoogle Scholar
  119. Sanchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27(2):185–194CrossRefGoogle Scholar
  120. Sanchez O, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99(13):5270–5295CrossRefGoogle Scholar
  121. Sar T, Stark BC, Akbas MY (2017) Effective ethanol production from whey powder through immobilized E.coli expressing Vitreoscilla hemoglobin. Bioeng 8(2):171–181Google Scholar
  122. Schmid O, Padel S, Levidow L (2012) The bio-economy concept and knowledge base in a public goods and farmer perspective. Bio-Based Appl Econ 1(1):47–63Google Scholar
  123. Scordia D, Testa G, Cosentino SL (2014) Perennial grasses as lignocellulosic feedstock for second-generation bioethanol production in Mediterranean environment. Ital J Agron 9(2):84–92CrossRefGoogle Scholar
  124. Selim KA, El-Ghwas DE, Easa SM, Hassan MIA (2018) Bioethanol a microbial biofuel metabolite; new insights of yeast metabolic engineering. Ferment 4(1):1–27CrossRefGoogle Scholar
  125. Serrano ML, Angulo FS, Negro MJ, Rosa SM, Martin JMC, Fierro JLG (2018) Second generation bioethanol production combining simultaneous fermentation and saccharification of IL-pretreated barley straw. ACS Sustainable Chem Eng 6(5):7086–7095CrossRefGoogle Scholar
  126. Shafizadeh F, Bradbury AGW (1979) Thermal degradation of cellulose in air and nitrogen at low temperatures. J Appl Poly Sci 23(5):1431–1442CrossRefGoogle Scholar
  127. Sharma G (1988) Developments in bioreactors for fuel ethanol production. Proc Biochem 23:138–145Google Scholar
  128. Sharma S, Sharma V, Kuila A (2018) Simultaneous saccharification and fermentation of corn husk by co-culture. J Petrol Environ Biotechnol 9(1):1–5Google Scholar
  129. Shukla L, Suman A, Yadav AN, Verma P, Saxena AK (2016) Syntrophic microbial system for ex-situ degradation of paddy straw at low temperature under controlled and natural environment. J App Biol Biotech 4:30–37Google Scholar
  130. Sieker T, Neuner A, Dimitrova D, Tippkotter N, Muffler K, Bart HJ, Heinzle E, Ulber R (2011) Ethanol production from grass silage by simultaneous pretreatment, saccharification and fermentation: first steps in the process of development. Eng Life Sci 11(4):436–442CrossRefGoogle Scholar
  131. Sierra R, Granda C, Holtzapple MT (2009) Short term lime pretreatment of poplar wood. Biotechnol Prog 25(2):323–332CrossRefGoogle Scholar
  132. Singh A, Sharma P, Saran AK, Singh N, Bishnoi NR (2013) Comparative study on ethanol production from pretreated sugarcane bagasse using immobilized Saccharomyces cerevisiae on various matrices. Renew Energy 50:488–493CrossRefGoogle Scholar
  133. Singh LK, Chaudhary G, Majumder CB, Ghosh S (2011) Utilization of hemicellulosic fraction of lignocellulosic biomaterial for bioethanol production. Adv Appl Sci Res 2(5):508–521Google Scholar
  134. Singh S (2013) Praj Industries revs up cellulosic ethanol plan. India Frobes, India. Accessed 15 July 2018
  135. Sipos B, Kreuger E, Svensson S, Reczey K, Bjornsson L, Zacchi G (2010) Steam pretreatment of dry and ensiled industrial hemp for ethanol production. Biomass Bioenergy 34:1721–1731CrossRefGoogle Scholar
  136. Sonego JLS, Lemos DA, Pinto CEM, Cruz AJG, Badino AC (2016) Extractive fed-batch ethanol fermentation with CO2 stripping in a bubble column bioreactor: experiment and modeling. Energy Fuels 30(1):748–757CrossRefGoogle Scholar
  137. Sooch BS, Lugani Y (2017) Microbial Diversity: types, utility and its conservation. In: Chauhan A, Bharti PK (eds) Forest and biodiversity conservation. Envy Book Series. Discovery Publishing House Pvt. Ltd., New Delhi, India, pp 131–166Google Scholar
  138. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11CrossRefGoogle Scholar
  139. Swain KC (2014) Biofuel production in India: potential, prospects and technology. J Fundam Renew Energy Appl 4(1):1–4CrossRefGoogle Scholar
  140. Swart J, Ho P, Jiang J (2008) Risk perceptions and GM crops: the case of China. Tailoring Biotechnol Soc Sci Technol 3(3):11–28Google Scholar
  141. Taherzadeh MJ, Karimi K (2007) Enzyme based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources 2(4):707–738Google Scholar
  142. Talebnia F, Karakashev D, Angelidaki I (2010) Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresour Technol 101(13):4744–4753CrossRefGoogle Scholar
  143. Tarrsini M, Teoh YP, Ng QH, Kunasundaril B, Oo ZX, Shuit HS, Hoo PY (2018) Practicability of lignocellulosic waste composite in controlling air pollution from leaves litter through bioethanol production. Mat Sci Eng 318:1–8Google Scholar
  144. Tayyab M, Noman A, Islam W, Waheed S, Arafat Y, Ali F, Zaynab M, Lin S, Zhang H, Lin W (2018) Bioethanol production from lignocellulosic biomass by environment friendly pretreatment methods: a review. Appl Ecol Environ Res 16(1):225–249CrossRefGoogle Scholar
  145. Teymouri F, Perez LL, Alizadeh H, Dale BE (2005) Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresour Technol 96(18):2014–2018CrossRefGoogle Scholar
  146. Turner P, Mamo G, Karlsson EN (2007) Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Fact 6(9):1–23Google Scholar
  147. Tutt M, Kikas T, Olt J (2012) Comparison of different pretreatment methods on degradation of rye straw. Eng Rural Develop 1:412–416Google Scholar
  148. Vaid S, Nargotra P, Bajaj BK (2018) Consolidated bioprocessing for biofuel-ethanol production from pine needle biomass. Environ Prog Sustain Energy 37(1):546–552CrossRefGoogle Scholar
  149. Valenzuela R, Priebe X, Troncoso E, Ortega I, Parra C, Freer J (2016) Fiber modification by organosolv catalyzed with H2SO4 improves SSF of Pinus radiata. Ind Crops Prod 86:79–86CrossRefGoogle Scholar
  150. Vallejos ME, Felissia FE, Area MC (2017) Hydrothermal treatments applied to agro- and forest-industrial waste to produce high added value compounds. BioResources 12(1):2058–2080Google Scholar
  151. Viikari L, Alapuranen M, Puranen T, Vehmaanpera J, Siikaaho M (2007) Thermostable enzymes in lignocellulose hydrolysis. Adv Biochem Eng Biotechnol 108:121–145Google Scholar
  152. Walker DJ, Gallagher J, Winters A, Somani A, Ravella SR, Bryant DN (2018) Process optimization of steam explosion parameters on multiple lignocellulosic biomass using Taguchi method—a critical appraisal. Front Energy Res 6(46):1–13Google Scholar
  153. Wang M, Han J, Dunn JF, Cai H, Elgowainy A (2012) Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn, sugarcane and cellulosic biomass for US use. Environ Res Lett 7:1–13Google Scholar
  154. Watanabe I, Miyata N, Ando A, Shiroma R, Tokuyasu K, Nakamura T (2012) Ethanol production by repeated-batch simultaneous saccharification and fermentation (SSF) of alkali-treated rice straw using immobilized Saccharomyces cerevisiae cells. Bioresour Technol 123:695–698CrossRefGoogle Scholar
  155. Wheals AE, Basso LC, Alves DM, Amorim HV (1999) Fuel ethanol after 25 years. Trend Biotechnol 17(12):482–487CrossRefGoogle Scholar
  156. Wi SG, Choi IS, Kim KH, Kim HM, Bae HJ (2013) Bioethanol production from rice straw by popping pretreatment. Biotechnol Biofuels 6(1):1–7CrossRefGoogle Scholar
  157. Wingren A, Galbe M, Zacchi G (2003) Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks. Biotechnol Prog 19(4):1109–1117CrossRefGoogle Scholar
  158. Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96(18):1959–1966CrossRefGoogle Scholar
  159. Xu Q, Singh A, Himmel ME (2009) Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose. Curr Opin Biotechnol 20(3):364–371CrossRefGoogle Scholar
  160. Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B, Chauhan VS, Dhaliwal HS, Saxena AK (2017a) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:1–13CrossRefGoogle Scholar
  161. Yadav AN, Sachan SG, Verma P, Kaushik R, Saxena AK (2016) Cold active hydrolytic enzymes production by psychrotrophic Bacilli isolated from three sub-glacial lakes of NW Indian Himalayas. J Basic Microbiol 56:294–307CrossRefGoogle Scholar
  162. Yadav AN, Verma P, Kumar R, Kumar V, Kumar K (2017b) Current applications and future prospects of eco-friendly microbes. EU Voice 3:21–22Google Scholar
  163. Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N, Gupta VK, Saxena AK (2018) Biodiversity of the genus Penicillium in different habitats. In: Gupta VK, Rodriguez-Couto S (eds) New and future developments in microbial biotechnology and bioengineering, Penicillium system properties and applications. Elsevier, Amsterdam, pp 3–18.
  164. Yang B, Dai Z, Ding SY, Wyman CE (2011) Biofuels enzymatic hydrolysis of cellulosic biomass 2(4):421–450Google Scholar
  165. Yang X, Lee JH, Yoo HY, Shin HY, Thapa LP, Park C, Kim SW (2014) Production of bioethanol and biodiesel using instant noodle waste. Bioprocess Biosyst Eng 37(8):1627–1635CrossRefGoogle Scholar
  166. Zaman K, Awan U, Islam T, Paidi R, Hassan A, Abdullah A (2016) Econometric applications for measuring the environmental impacts of biofuel production in the panel of world’s largest region. Int J Hydrogen Energy 41(7):4305–4325CrossRefGoogle Scholar
  167. Zhang K, Pei Z, Wang D (2016) Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemical: a review. Bioresour Technol 199:21–33CrossRefGoogle Scholar
  168. Zhang Q, He J, Tian M, Mao Z, Tang L, Zhang J, Zhang H (2011) Enhancement of methane production from cassava residues by biological pretreatment using a constructed microbial consortium. Bioresour Technol 102(19):8899–8906CrossRefGoogle Scholar
  169. Zheng Y, Lin H, Tsao GT (1998) Pretreament for cellulose hydrolysis by carbon dioxide explosion. Biotechnol Prog 14(6):890–896CrossRefGoogle Scholar
  170. Zhou L, Shi M, Cai Q, Wu L, Hu X, Yang X, Chen C, Xu J (2013) Hydrolysis of hemicelluloses catalyzed by hierarchial H-USY zeolites- The role of acidity and pore structure. Microporous Mesoporous Mater 169:54–59CrossRefGoogle Scholar
  171. Zhu J, Wan C, Li Y (2010) Enhanced solid-state anaerobic digestion of corn stover by alkaline pretreatment. Bioresour Technol 101(19):7523–7528CrossRefGoogle Scholar
  172. Zhu JY, Pan XJ, Wang GS, Gleisner R (2009) Sulfite pretreatment for robust enzymatic saccharification of spruce and red pine. Bioresour Technol 100(8):2411–2418CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yogita Lugani
    • 1
  • Balwinder Singh Sooch
    • 1
  • Sachin Kumar
    • 2
    Email author
  1. 1.Department of BiotechnologyPunjabi UniversityPatialaIndia
  2. 2.Biochemical Conversion DivisionSardar Swaran Singh National Institute of Bio-EnergyWadalakalan, KapurthalaIndia

Personalised recommendations