Technologies for Biofuel Production: Current Development, Challenges, and Future Prospects

  • Divjot Kour
  • Kusam Lata Rana
  • Neelam Yadav
  • Ajar Nath YadavEmail author
  • Ali Asghar Rastegari
  • Chhatarpal Singh
  • Puneet Negi
  • Karan Singh
  • Anil Kumar Saxena
Part of the Biofuel and Biorefinery Technologies book series (BBT, volume 10)


The global energy demand is increasing day by day, with which substantial risk to the environment is also increasing. The consumption of the fuel, as well as the demand, is expected to grow rapidly side by side, and use of fossil energy is causing harmful impacts on the environment. All these factors have greatly attracted the attention of the researchers to find some alternative renewable resources of energy. Biofuels are an outstanding instance of renewable energy which can be produced using biological organisms which will ultimately cause a reduction in dependence on fossil fuels. Thus, biofuels are an attractive and feasible source of renewable energy on contrary to the geopolitical instability, finite nature, and deleterious global effects of fossil fuel energy. Biofuels are basically the energy-enriched chemicals that are generated either directly through the biological processes or from the chemical conversion of the biomass of prior living organisms. Biofuels are chiefly produced by photosynthetic organisms, including photosynthetic bacteria, micro- and macroalgae, and vascular land plants. Among all these organisms utilized, microalgae are being considered to be the most attractive source for production of biofuels. The biofuels production is still challenging at commercial scale, and new strains with commercial potential are still needed to be explored more. The combination of multiple genetic engineering strategies for optimizing the biofuels production will surely be useful. Thus, to overcome the energy crisis, the global cooperative efforts are very important for transforming biofuels into our current energy system that will further aid in cultivation methodology development as well as technology advancement of biofuels production.


Biodiesel Biofuel Bioresources Microbial technologies Renewable energy 



The authors are grateful to Prof. Harcharan Singh Dhaliwal, Vice Chancellor, Eternal University, Baru Sahib, Himachal Pradesh, India, for providing infrastructural facilities and constant encouragement.


  1. Abrini J, Naveau H, Nyns E-J (1994) Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide. Arch Microbiol 161:345–351CrossRefGoogle Scholar
  2. Afify AE-MM, Shalaby EA, Shanab SM (2010) Enhancement of biodiesel production from different species of algae. Grasas Aceites 61:416–422CrossRefGoogle Scholar
  3. Agarwal AK (2007) Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog Energy Combust Sci 33:233–271CrossRefGoogle Scholar
  4. Akoh CC, Chang SW, Lee GC, Shaw JF (2007) Enzymatic approach to biodiesel production. J Agric Food Chem 55:8995–9005CrossRefGoogle Scholar
  5. Almodares A, Hadi M (2009) Production of bioethanol from sweet sorghum: a review. Afr J Agric Res 4:772–780Google Scholar
  6. Almodares A, Sepahi A (1996) Comparison among sweet sorghum cultivars, lines and hybrids for sugar production. Ann Plant Physiol 10:50–55Google Scholar
  7. Almodares A, Sepahi A, Dalilitajary H, Gavami R (1994) Effect of phenological stages on biomass and carbohydrate contents of sweet sorghum cultivars. Ann Plant Physiol 8:42–48Google Scholar
  8. Almodares A, Hadi M, Dosti B (2007) Effects of salt stress on germination percentage and seedling growth in sweet sorghum cultivars. J Biol Sci 7:1492–1495CrossRefGoogle Scholar
  9. Almodares A, Hadi M, Ahmadpour H (2008) Sorghum stem yield and soluble carbohydrates under different salinity levels. Afr J Biotechnol 7:4051–4055Google Scholar
  10. Alvira P, Tomás-Pejó E, Ballesteros M, Negro M (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861CrossRefGoogle Scholar
  11. Anam K, Habibi MS, Harwati TU, Susilaningsih D (2012) Photofermentative hydrogen production using Rhodobium marinum from bagasse and soy sauce wastewater. Int J Hydrog Energy 37:15436–15442CrossRefGoogle Scholar
  12. Ananyev G, Carrieri D, Dismukes GC (2008) Optimization of metabolic capacity and flux through environmental cues to maximize hydrogen production by the cyanobacterium “Arthrospira (Spirulina) maxima”. Appl Environ Microbiol 74:6102–6113CrossRefGoogle Scholar
  13. Anitha M, Kamarudin SK, Shamsul N, Kofli NT (2015) Determination of bio-methanol as intermediate product of anaerobic co-digestion in animal and agriculture wastes. Int J Hydrog Energy 40:11791–11799CrossRefGoogle Scholar
  14. Aoyama K, Uemura I, Miyake J, Asada Y (1997) Fermentative metabolism to produce hydrogen gas and organic compounds in a cyanobacterium, Spirulina platensis. J Ferment Bioeng 83:17–20CrossRefGoogle Scholar
  15. Arteaga-Pérez LE, Gómez-Cápiro O, Karelovic A, Jiménez R (2016) A modelling approach to the techno-economics of Biomass-to-SNG/Methanol systems: standalone versus integrated topologies. Chem Eng J 286:663–678CrossRefGoogle Scholar
  16. Atsumi S, Higashide W, Liao JC (2009) Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol 27:1177CrossRefGoogle Scholar
  17. Azad AK, Rasul M, Khan MMK, Sharma SC, Hazrat M (2015) Prospect of biofuels as an alternative transport fuel in Australia. Renew Sust Energy Rev 43:331–351CrossRefGoogle Scholar
  18. Bahadar A, Khan MB (2013) Progress in energy from microalgae: a review. Renew Sust Energy Rev 27:128–148CrossRefGoogle Scholar
  19. Bak JS, Ko JK, Choi IG, Park YC, Seo JH, Kim KH (2009) Fungal pretreatment of lignocellulose by Phanerochaete chrysosporium to produce ethanol from rice straw. Biotechnol Bioeng 104:471–482CrossRefGoogle Scholar
  20. Balat M (2011) Potential alternatives to edible oils for biodiesel production–a review of current work. Energy Conv Manag 52:1479–1492CrossRefGoogle Scholar
  21. Banerjee A, Sharma R, Chisti Y, Banerjee U (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Bbiotechnol 22:245–279CrossRefGoogle Scholar
  22. Banerjee S, Mudliar S, Sen R, Giri B, Satpute D, Chakrabarti T, Pandey R (2010) Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. Biofuel Bioprod Biorefin 4:77–93CrossRefGoogle Scholar
  23. Bansal P (2005) Evolving sustainably: a longitudinal study of corporate sustainable development. Strat Manag J 26:197–218CrossRefGoogle Scholar
  24. Bansal SK, Sreekrishnan T, Singh R (2013) Effect of heat pretreated consortia on fermentative biohydrogen production from vegetable waste. Nat Acad Sci Lett 36:125–131CrossRefGoogle Scholar
  25. Barbosa MJ, Rocha JM, Tramper J, Wijffels RH (2001) Acetate as a carbon source for hydrogen production by photosynthetic bacteria. J Biotechnol 85:25–33CrossRefGoogle Scholar
  26. Beale C, Long S (1995) Can perennial C4 grasses attain high efficiencies of radiant energy conversion in cool climates? Plant Cell Environ 18:641–650CrossRefGoogle Scholar
  27. Becker EW (1994) Microalgae: biotechnology and microbiology, vol 10. Cambridge University PressGoogle Scholar
  28. Behera SS, Ray RC (2019) Forest bioresources for bioethanol and biodiesel production with emphasis on mohua (Madhuca latifolia L.) flowers and seeds. In: Ray RC, Ramachandran S (eds) Bioethanol production from food crops. Academic Press, United Kingdom, pp 233–247.
  29. Bellido C, Pinto ML, Coca M, González-Benito G, García-Cubero MT (2014) Acetone–butanol–ethanol (ABE) production by Clostridium beijerinckii from wheat straw hydrolysates: efficient use of penta and hexa carbohydrates. Bioresour Technol 167:198–205CrossRefGoogle Scholar
  30. Berndes G, Hoogwijk M, Van den Broek R (2003) The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass Bioenergy 25:1–28CrossRefGoogle Scholar
  31. Bertsch J, Müller V (2015) Bioenergetic constraints for conversion of syngas to biofuels in acetogenic bacteria. Biotechnol Biofuel 8:210CrossRefGoogle Scholar
  32. Bhardwaj AK, Zenone T, Chen J (2015) Sustainable biofuels: an ecological assessment of the future energy. Walter de Gruyter GmbH & Co KGGoogle Scholar
  33. Binod P, Sindhu R, Singhania RR, Vikram S, Devi L, Nagalakshmi S, Kurien N, Sukumaran RK, Pandey A (2010) Bioethanol production from rice straw: an overview. Bioresour Technol 101:4767–4774. Scholar
  34. Biswas S, Kundu D, Mazumdar S, Saha A, Majumdar B, Ghorai A, Ghosh D, Yadav A, Saxena A (2018) Study on the activity and diversity of bacteria in a new gangetic alluvial soil (Eutrocrept) under rice-wheat-jute cropping system. J Environ Biol 39:379–386CrossRefGoogle Scholar
  35. Boateng A, Hicks K, Vogel KP (2006) Pyrolysis of switchgrass (Panicum virgatum) harvested at several stages of maturity. J Anal Appl Pyroly 75:55–64CrossRefGoogle Scholar
  36. Boran E, Özgür E, van der Burg J, Yücel M, Gündüz U, Eroglu I (2010) Biological hydrogen production by Rhodobacter capsulatus in solar tubular photo bioreactor. J Clean Prod 18:S29–S35CrossRefGoogle Scholar
  37. Borugadda VB, Goud VV (2012) Biodiesel production from renewable feedstocks: status and opportunities. Renew Sust Energy Rev 16:4763–4784CrossRefGoogle Scholar
  38. Braide W, Kanu I, Oranusi U, Adeleye S (2016) Production of bioethanol from agricultural waste. J Fund Appl Sci 8:372–386CrossRefGoogle Scholar
  39. Cai Y, Lai C, Li S, Liang Z, Zhu M, Liang S, Wang J (2011) Disruption of lactate dehydrogenase through homologous recombination to improve bioethanol production in Thermoanaerobacterium aotearoense. Enzy Microb Technol 48:155–161CrossRefGoogle Scholar
  40. Cao GL, Zhao L, Wang AJ, Wang ZY, Ren NQ (2014) Single-step bioconversion of lignocellulose to hydrogen using novel moderately thermophilic bacteria. Biotechnol Biofuel 7:82CrossRefGoogle Scholar
  41. Carere CR, Sparling R, Cicek N, Levin DB (2008) Third generation biofuels via direct cellulose fermentation. Int J Mol Sci 9:1342–1360CrossRefGoogle Scholar
  42. Carvalho Júnior RM, Vargas JV, Ramos LP, Marino CE, Torres JC (2011) Microalgae biodiesel via in situ methanolysis. J Chem Technol Biotechnol 86:1418–1427CrossRefGoogle Scholar
  43. Casler MD (2012) Switchgrass breeding, genetics, and genomics. Switchgrass. Springer, London, pp 29–53CrossRefGoogle Scholar
  44. Casson A, Muliastra YIKD, Obidzinski K (2014) Large-scale plantations, bioenergy developments and land use change in Indonesia vol 170. CIFORGoogle Scholar
  45. Chandra R, Vijay V, Subbarao P, Khura T (2011) Performance evaluation of a constant speed IC engine on CNG, methane enriched biogas and biogas. Appl Energy 88:3969–3977CrossRefGoogle Scholar
  46. Chandra R, Takeuchi H, Hasegawa T (2012) Hydrothermal pretreatment of rice straw biomass: a potential and promising method for enhanced methane production. Appl Energy 94:129–140CrossRefGoogle Scholar
  47. Chatzifragkou A, Fakas S, Galiotou-Panayotou M, Komaitis M, Aggelis G, Papanikolaou S (2010) Commercial sugars as substrates for lipid accumulation in Cunninghamella echinulata and Mortierella isabellina fungi. Eur J Lipid Sci Technol 112:1048–1057CrossRefGoogle Scholar
  48. Chen GQ, Jiang Y, Chen F (2008) Variation of lipid class composition in Nitzschia laevis as a response to growth temperature change. Food Chem 109:88–94CrossRefGoogle Scholar
  49. Cheng J, Zhu M (2013) A novel anaerobic co-culture system for bio-hydrogen production from sugarcane bagasse. Bioresour Technol 144:623–631CrossRefGoogle Scholar
  50. Cheng CL, Che PY, Chen BY, Lee WJ, Lin CY, Chang JS (2012) Biobutanol production from agricultural waste by an acclimated mixed bacterial microflora. Appl Energy 100:3–9CrossRefGoogle Scholar
  51. Cheng J, Yu Y, Zhu M (2014) Enhanced biodegradation of sugarcane bagasse by Clostridium thermocellum with surfactant addition. Green Chem 16:2689–2695CrossRefGoogle Scholar
  52. Chidrewar G, Tanavade J, Deshpande S, Vartak P, Shah J, Patel N, Patadiya C, Bafna P (2010) Anti-ulcer and antioxidant activity of leaves of Madhuca indica in rats. Orient Pharm Exp Med 10:13–20CrossRefGoogle Scholar
  53. Choi SP, Nguyen MT, Sim SJ (2010) Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresour Technol 101:5330–5336CrossRefGoogle Scholar
  54. Cripps R, Eley K, Leak DJ, Rudd B, Taylor M, Todd M, Boakes S, Martin S, Atkinson T (2009) Metabolic engineering of Geobacillus thermoglucosidasius for high yield ethanol production. Metab Eng 11:398–408CrossRefGoogle Scholar
  55. Crowe B, Attalah S, Agrawal S, Waller P, Ryan R, Van Wagenen J, Chavis A, Kyndt J, Kacira M, Ogden KL (2012) A comparison of Nannochloropsis salina growth performance in two outdoor pond designs: conventional raceways versus the ARID pond with superior temperature management. Int J Chem Eng.
  56. Daniel SL, Hsu T, Dean S, Drake H (1990) Characterization of the H2-and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui. J Bacteriol 172:4464–4471CrossRefGoogle Scholar
  57. Dar RA, Dar EA, Kaur A, Phutela UG (2018) Sweet sorghum-a promising alternative feedstock for biofuel production. Renew Sust Energy Rev 82:4070–4090CrossRefGoogle Scholar
  58. Dash M, Venkata Dasu V, Mohanty K (2015) Physico-chemical characterization of Miscanthus, Castor, and Jatropha towards biofuel production. J Renew Sust Energ 7:043124CrossRefGoogle Scholar
  59. David K, Ragauskas AJ (2010) Switchgrass as an energy crop for biofuel production: a review of its ligno-cellulosic chemical properties. Energy Environ Sci 3:1182–1190CrossRefGoogle Scholar
  60. De Swaaf ME, Sijtsma L, Pronk JT (2003) High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii. Biotechnol Bioeng 81:666–672CrossRefGoogle Scholar
  61. De Vrije T, Bakker RR, Budde MA, Lai MH, Mars AE, Claassen PA (2009) Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Biotechnol Biofuel 2:12CrossRefGoogle Scholar
  62. Demirbas A (2005) Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog Energy Comb Sci 31:171–192CrossRefGoogle Scholar
  63. Demirbas A (2009) Political, economic and environmental impacts of biofuels: a review. Appl Energy 86:S108–S117CrossRefGoogle Scholar
  64. Demirbas A (2010) Social, economic, environmental and policy aspects of biofuels. Energy Edu Sci Technol Part B-Soc Edu Study 2:75–109Google Scholar
  65. Demirbas A, Bafail A, Ahmad W, Sheikh M (2016) Biodiesel production from non-edible plant oils. Energy Explor Exploit 34:290–318CrossRefGoogle Scholar
  66. Deshmukh S, Jinturkar A, Gawande J (2008) Comparative experimental study of single basin and stepped type solar stil. Energy Edu Sci Technol 20:79Google Scholar
  67. Divakara B, Upadhyaya H, Wani S, Gowda CL (2010) Biology and genetic improvement of Jatropha curcas L.: a review. Appl Energy 87:732–742CrossRefGoogle Scholar
  68. Doshi P, Srivastava G (2013) Sustainable approach to produce bioethanol from Karanja (Pongamia pinnata) oilseed residue. Turk J Agric For 37:781–788CrossRefGoogle Scholar
  69. Dragone G, Fernandes BD, Vicente AA, Teixeira JA (2010) Third generation biofuels from microalgae. Curr Res Technol Edu Top Appl Microbiol Microb Biotechnol 2:1355–1366Google Scholar
  70. Ducat DC, Way JC, Silver PA (2011) Engineering cyanobacteria to generate high-value products. Trend Biotechnol 29:95–103CrossRefGoogle Scholar
  71. Dutta K, Daverey A, Lin JG (2014) Evolution retrospective for alternative fuels: first to fourth generation. Renew Energy 69:114–122CrossRefGoogle Scholar
  72. Einloft S, Magalhães TO, Donato A, Dullius J, Ligabue R (2007) Biodiesel from rice bran oil: transesterification by tin compounds. Energy Fuels 22:671–674CrossRefGoogle Scholar
  73. Endalew AK, Kiros Y, Zanzi R (2011) Heterogeneous catalysis for biodiesel production from Jatropha curcas oil (JCO). Energy 36:2693–2700CrossRefGoogle Scholar
  74. Ewan B, Allen R (2005) A figure of merit assessment of the routes to hydrogen. Int J Hydrog Energy 30:809–819CrossRefGoogle Scholar
  75. Ezeji TC, Qureshi N, Blaschek HP (2007) Bioproduction of butanol from biomass: from genes to bioreactors. Curr Opin Biotechnol 18:220–227CrossRefGoogle Scholar
  76. Fakas S, Papanikolaou S, Batsos A, Galiotou-Panayotou M, Mallouchos A, Aggelis G (2009) Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass Bioenergy 33:573–580CrossRefGoogle Scholar
  77. Falkowski P, Raven J (1997) Photosynthesis in continuous light. Aquatic Photosynthesis Blackwell Science, Malden, Massachusetts, pp 193–227Google Scholar
  78. Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, Taylor F (2004) The evolution of modern eukaryotic phytoplankton. Science 305:354–360CrossRefGoogle Scholar
  79. Farage PK, Blowers D, Long SP, Baker NR (2006) Low growth temperatures modify the efficiency of light use by photosystem II for CO2 assimilation in leaves of two chilling-tolerant C4 species, Cyperus longus L. and Miscanthus giganteus. Plant, Cell Environ 29:720–728CrossRefGoogle Scholar
  80. Fei Q, Chang HN, Shang L, Kim N, Kang J (2011) The effect of volatile fatty acids as a sole carbon source on lipid accumulation by Cryptococcus albidus for biodiesel production. Bioresour Technol 102:2695–2701CrossRefGoogle Scholar
  81. Fu R, Fei Q, Shang L, Brigham CJ, Chang HN (2018) Enhanced microbial lipid production by Cryptococcus albidus in the high-cell-density continuous cultivation with membrane cell recycling and two-stage nutrient limitation. J Ind Microbiol Biotechnol 45:1045–1051CrossRefGoogle Scholar
  82. Gaba S, Singh RN, Abrol S, Yadav AN, Saxena AK, Kaushik R (2017) Draft genome sequence of Halolamina pelagica CDK2 isolated from natural salterns from Rann of Kutch, Gujarat, India. Genome Announc 5:1–2CrossRefGoogle Scholar
  83. Ganuza E, Benítez-Santana T, Atalah E, Vega-Orellana O, Ganga R, Izquierdo M (2008) Crypthecodinium cohnii and Schizochytrium sp. as potential substitutes to fisheries-derived oils from seabream (Sparus aurata) microdiets. Aquaculture 277:109–116CrossRefGoogle Scholar
  84. Gao Z, Zhao H, Li Z, Tan X, Lu X (2012) Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria. Energy Environ Sci 5:9857–9865CrossRefGoogle Scholar
  85. Genthner BS, Bryant M (1982) Growth of Eubacterium limosum with carbon monoxide as the energy source. Appl Environ Microbiol 43:70–74Google Scholar
  86. Georgieva TI, Ahring BK (2007) Evaluation of continuous ethanol fermentation of dilute-acid corn stover hydrolysate using thermophilic anaerobic bacterium Thermoanaerobacter BG1L1. Appl Microbiol Biotechnol 77:61–68CrossRefGoogle Scholar
  87. Ghadge SV, Raheman H (2005) Biodiesel production from mahua (Madhuca indica) oil having high free fatty acids. Biomass Bioenergy 28:601–605CrossRefGoogle Scholar
  88. Gimpel JA, Specht EA, Georgianna DR, Mayfield SP (2013) Advances in microalgae engineering and synthetic biology applications for biofuel production. Curr Opin Chem Biol 17:489–495CrossRefGoogle Scholar
  89. Girotto F, Alibardi L, Cossu R (2015) Food waste generation and industrial uses: a review. Waste Manag 45:32–41CrossRefGoogle Scholar
  90. Gnansounou E, Dauriat A, Wyman C (2005) Refining sweet sorghum to ethanol and sugar: economic trade-offs in the context of North China. Bioresour Technol 96:985–1002CrossRefGoogle Scholar
  91. Goiris K, Muylaert K, Fraeye I, Foubert I, De Brabanter J, De Cooman L (2012) Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. J Appl Phycol 24:1477–1486CrossRefGoogle Scholar
  92. Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36:269–274CrossRefGoogle Scholar
  93. Green EM (2011) Fermentative production of butanol—the industrial perspective. Curr Opin Biotechnol 22:337–343CrossRefGoogle Scholar
  94. Han Y, Yu C, Liu H (2010) A microbial fuel cell as power supply for implantable medical devices. Biosens Bioelect 25:2156–2160CrossRefGoogle Scholar
  95. Harnisch F, Schröder U (2009) Selectivity versus mobility: separation of anode and cathode in microbial bioelectrochemical systems. Chem Sus Chem 2:921–926CrossRefGoogle Scholar
  96. Harun R, Danquah MK, Forde GM (2010) Microalgal biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biotechnol 85:199–203Google Scholar
  97. Harun R, Jason W, Cherrington T, Danquah MK (2011) Exploring alkaline pre-treatment of microalgal biomass for bioethanol production. Appl Energy 88:3464–3467CrossRefGoogle Scholar
  98. Hatakka AI (1983) Pretreatment of wheat straw by white-rot fungi for enzymic saccharification of cellulose. Eur J Appl Microbiol Biotechnol 18:350–357CrossRefGoogle Scholar
  99. Hayashida S, Ohta K, Flor PQ, Nanri N, Miyahara I (1982) High concentration-ethanol fermentation of raw ground corn. Agric Biol Chem 46:1947–1950Google Scholar
  100. He Z, Minteer SD, Angenent LT (2005) Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ Sci Technol 39:5262–5267CrossRefGoogle Scholar
  101. He Z, Wagner N, Minteer SD, Angenent LT (2006) An upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy. Environ Sci Technol 40:5212–5217CrossRefGoogle Scholar
  102. Heimann K (2016) Novel approaches to microalgal and cyanobacterial cultivation for bioenergy and biofuel production. Curr Opin Biotechnol 38:183–189CrossRefGoogle Scholar
  103. Hijosa-Valsero M, Paniagua-García AI, Díez-Antolínez R (2017) Biobutanol production from apple pomace: the importance of pretreatment methods on the fermentability of lignocellulosic agro-food wastes. Appl Microbiol Biotechnol 101:8041–8052CrossRefGoogle Scholar
  104. Hirokawa Y, Suzuki I, Hanai T (2015) Optimization of isopropanol production by engineered cyanobacteria with a synthetic metabolic pathway. J Biosci Bioeng 119:585–590CrossRefGoogle Scholar
  105. Ho SH, Huang SW, Chen CY, Hasunuma T, Kondo A, Chang JS (2013) Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour Technol 135:191–198. Scholar
  106. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098CrossRefGoogle Scholar
  107. Huzir NM, Aziz MMA, Ismail S, Abdullah B, Mahmood NAN, Umor N, Muhammad SAFaS (2018) Agro-industrial waste to biobutanol production: eco-friendly biofuels for next generation. Renew Sust Energy Rev 94:476–485Google Scholar
  108. Ike A, Murakawa T, Kawaguchi H, Hirata K, Miyamoto K (1999) Photoproduction of hydrogen from raw starch using a halophilic bacterial community. J Biosci Bioeng 88:72–77. Scholar
  109. Jain S, Sharma M (2010) Prospects of biodiesel from Jatropha in India: a review. Renew Sust Energy Rev 14:763–771CrossRefGoogle Scholar
  110. Jeennor S, Laoteng K, Tanticharoen M, Cheevadhanarak S (2006) Comparative fatty acid profiling of Mucor rouxii under different stress conditions. FEMS Microbiol Lett 259:60–66CrossRefGoogle Scholar
  111. Jeffries T, Timourian H, Ward R (1978) Hydrogen production by Anabaena cylindrica: effects of varying ammonium and ferric ions, pH, and light. Appl Environ Microbiol 35:704–710Google Scholar
  112. Jiang Y, Chen F, Liang S-Z (1999) Production potential of docosahexaenoic acid by the heterotrophic marine dinoflagellate Crypthecodinium cohnii. Proc Biochem 34:633–637CrossRefGoogle Scholar
  113. Johnson MB, Wen Z (2009) Production of biodiesel fuel from the microalga Schizochytrium limacinum by direct transesterification of algal biomass. Energy Fuel 23:5179–5183CrossRefGoogle Scholar
  114. Jones M, Walsh M (2013) Miscanthus: for energy and fibre. RoutledgeGoogle Scholar
  115. Jørgensen U (2011) Benefits versus risks of growing biofuel crops: the case of Miscanthus. Curr Opin Environ Sust 3:24–30CrossRefGoogle Scholar
  116. Joshi G, Pandey JK, Rana S, Rawat DS (2017) Challenges and opportunities for the application of biofuel. Renew Sust Energy Rev 79:850–866CrossRefGoogle Scholar
  117. Jung GY, Jung HO, Kim JR, Ahn Y, Park S (1999) Isolation and characterization of Rhodopseudomonas palustris P4 which utilizes CO with the production of H2. Biotechnol Lett 21:525–529CrossRefGoogle Scholar
  118. Kalscheuer R, Stölting T, Steinbüchel A (2006) Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152:2529–2536CrossRefGoogle Scholar
  119. Kamel DA, Farag HA, Amin NK, Zatout AA, Ali RM (2018) Smart utilization of Jatropha (Jatropha curcas L) seeds for biodiesel production: optimization and mechanism. Ind Crop Prod 111:407–413CrossRefGoogle Scholar
  120. Kant P, Wu S, Chaliha S, Jasrotia R (2011) Going beyond Jatropha: can an expanded land and feedstock base help India meet its ambitious biodiesel target. Institute of Green Economy, New Delhi, IGREC Working Paper IGREC-22Google Scholar
  121. Kapilan N, Reddy R (2008) Evaluation of methyl esters of mahua oil (Madhuca indica) as diesel fuel. J Am Oil Chem Soc 85:185–188CrossRefGoogle Scholar
  122. Keller FA, Hamilton JE, Nguyen QA (2003) Microbial pretreatment of biomass. In: Davison BH, Lee JW, Finkelstein M, McMillan JD (eds) Biotechnology for fuels and chemicals: the twenty-fourth symposium. Humana Press, Totowa, NJ, pp 27–41.
  123. Kerby R, Ludden P, Roberts G (1995) Carbon monoxide-dependent growth of Rhodospirillum rubrum. J Bacteriol 177:2241–2244CrossRefGoogle Scholar
  124. Khan M, Nizami A, Rehan M, Ouda O, Sultana S, Ismail I, Shahzad K (2017) Microbial electrolysis cells for hydrogen production and urban wastewater treatment: a case study of Saudi Arabia. Appl Energy 185:410–420CrossRefGoogle Scholar
  125. Khayoon M, Olutoye M, Hameed B (2012) Utilization of crude karanj (Pongamia pinnata) oil as a potential feedstock for the synthesis of fatty acid methyl esters. Bioresour Technol 111:175–179CrossRefGoogle Scholar
  126. Khedkar MA, Nimbalkar PR, Chavan PV, Chendake YJ, Bankar SB (2017a) Cauliflower waste utilization for sustainable biobutanol production: revelation of drying kinetics and bioprocess development. Bioproc Biosyst Eng 40:1493–1506CrossRefGoogle Scholar
  127. Khedkar MA, Nimbalkar PR, Gaikwad SG, Chavan PV, Bankar SB (2017b) Sustainable biobutanol production from pineapple waste by using Clostridium acetobutylicum B 527: drying kinetics study. Bioresour Technol 225:359–366CrossRefGoogle Scholar
  128. Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26:361–375. Scholar
  129. Kim M, Day DF (2011) Composition of sugar cane, energy cane, and sweet sorghum suitable for ethanol production at Louisiana sugar mills. J Ind Microbiol Biotechnol 38:803–807CrossRefGoogle Scholar
  130. Kim DH, Kim MS (2013) Development of a novel three-stage fermentation system converting food waste to hydrogen and methane. Bioresour Technol 127:267–274. Scholar
  131. Kim D, Cho SY, Maeng SH, Yi ES, Jung YJ, Park SW, Sohn YB, Jin DK (2012a) Diagnosis and constitutional and laboratory features of Korean girls referred for precocious puberty. Kor J Ped 55:481–486CrossRefGoogle Scholar
  132. Kim JK, Um B-H, Kim TH (2012b) Bioethanol production from micro-algae, Schizocytrium sp., using hydrothermal treatment and biological conversion. Kor J Chem Eng 29:209–214CrossRefGoogle Scholar
  133. Kim D-H, Cha J, Kang S, Kim MS (2013) Continuous photo-fermentative hydrogen production from lactate and lactate-rich acidified food waste. Int J Hydrog Energy 38:6161–6166. Scholar
  134. Kirk TK, Moore WE (2007) Removing lignin from wood with white-rot fungi and digestibility of resulting wood. Wood Fiber Sci 4:72–79Google Scholar
  135. Klanchui A, Raethong N, Prommeenate P, Vongsangnak W, Meechai A (2016) Cyanobacterial biofuels: strategies and developments on network and modeling. In: Network Biology. Springer, pp 75–102Google Scholar
  136. Koçar G, Civaş N (2013) An overview of biofuels from energy crops: current status and future prospects. Renew Sust Energy Rev 28:900–916CrossRefGoogle Scholar
  137. Koh LP, Ghazoul J (2008) Biofuels, biodiversity, and people: understanding the conflicts and finding opportunities. Biol Cons 141:2450–2460CrossRefGoogle Scholar
  138. Kong QX, Li L, Martinez B, Chen P, Ruan R (2010) Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Appl Biochem Biotechnol 160:9CrossRefGoogle Scholar
  139. Koutra E, Economou CN, Tsafrakidou P, Kornaros M (2018) Bio-based products from microalgae cultivated in digestates. Trends Biotechnol.
  140. Krumholz L, Bryant M (1985) Clostridium pfennigii sp. nov. uses methoxyl groups of monobenzenoids and produces butyrate. Int J Syst Evol Microbiol 35:454–456Google Scholar
  141. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729CrossRefGoogle Scholar
  142. Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J, Malcata FX, Van Langenhove H (2010a) Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trend Biotechnol 28:371–380CrossRefGoogle Scholar
  143. Kumar A, Kumar K, Kaushik N, Sharma S, Mishra S (2010b) Renewable energy in India: current status and future potentials. Renew Sust Energy Rev 14:2434–2442CrossRefGoogle Scholar
  144. Kumar M, Yadav AN, Tiwari R, Prasanna R, Saxena AK (2014) Evaluating the diversity of culturable thermotolerant bacteria from four hot springs of India. J Biodivers Biopros Dev 1:1–9Google Scholar
  145. Kumari D, Singh R (2018) Pretreatment of lignocellulosic wastes for biofuel production: a critical review. Renew Sust Energy Rev 90:877–891CrossRefGoogle Scholar
  146. Lan EI, Liao JC (2011) Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab Eng 13:353–363CrossRefGoogle Scholar
  147. Lardon L, Helias A, Sialve B, Steyer JP, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. ACS PublicationsGoogle Scholar
  148. Lee CM, Hung GJ, Yang CF (2011a) Hydrogen production by Rhodopseudomonas palustris WP 3-5 in a serial photobioreactor fed with hydrogen fermentation effluent. Bioresour Technol 102:8350–8356. Scholar
  149. Lee S, Oh Y, Kim D, Kwon D, Lee C, Lee J (2011b) Converting carbohydrates extracted from marine algae into ethanol using various ethanolic Escherichia coli strains. Appl Biochem Biotechnol 164:878–888CrossRefGoogle Scholar
  150. Li Y, Han D, Hu G, Sommerfeld M, Hu Q (2010) Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnol Bioeng 107:258–268CrossRefGoogle Scholar
  151. Li P, Miao X, Li R, Zhong J (2011) In situ biodiesel production from fast-growing and high oil content Chlorella pyrenoidosa in rice straw hydrolysate. BioMed Res Int
  152. Lin L, Ying D, Chaitep S, Vittayapadung S (2009) Biodiesel production from crude rice bran oil and properties as fuel. Appl Energy 86:681–688CrossRefGoogle Scholar
  153. Liou JSC, Balkwill DL, Drake GR, Tanner RS (2005) Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. Int J Syst Evol Microbiol 55:2085–2091CrossRefGoogle Scholar
  154. Liu H, Grot S, Logan BE (2005) Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 39:4317–4320CrossRefGoogle Scholar
  155. Liu BF, Ren NQ, Ding J, Xie GJ, Cao GL (2009) Enhanced photo-H2 production of R. faecalis RLD-53 by separation of CO2 from reaction system. Bioresour Technol 100:1501–1504CrossRefGoogle Scholar
  156. Liu Z, Ying Y, Li F, Ma C, Xu P (2010) Butanol production by Clostridium beijerinckii ATCC 55025 from wheat bran. J Ind Microbiol Biotechnol 37:495–501CrossRefGoogle Scholar
  157. Logan B (2004) Biologically extracting energy from wastewater: biohydrogen production and microbial fuel cells. Environ Sci Technol 38:160–167CrossRefGoogle Scholar
  158. Lopez-Hidalgo AM, Sánchez A, De León-Rodríguez A (2017) Simultaneous production of bioethanol and biohydrogen by Escherichia coli WDHL using wheat straw hydrolysate as substrate. Fuel 188:19–27CrossRefGoogle Scholar
  159. Lopez-Hidalgo AM, Alvarado-Cuevas ZD, De Leon-Rodriguez A (2018) Biohydrogen production from mixtures of agro-industrial wastes: chemometric analysis, optimization and scaling up. Energy 159:32–41. Scholar
  160. Lorowitz WH, Bryant MP (1984) Peptostreptococcus productus strain that grows rapidly with CO as the energy source. Appl Environ Microbiol 47:961–964Google Scholar
  161. Lu C, Zhao J, Yang ST, Wei D (2012) Fed-batch fermentation for n-butanol production from cassava bagasse hydrolysate in a fibrous bed bioreactor with continuous gas stripping. Bioresour Technol 104:380–387CrossRefGoogle Scholar
  162. Lü J, Sheahan C, Fu P (2011) Metabolic engineering of algae for fourth generation biofuels production. Energy Environ Sci 4:2451–2466CrossRefGoogle Scholar
  163. Lund H (2007) Renewable energy strategies for sustainable development. Energy 32:912–919CrossRefGoogle Scholar
  164. Lunin V, Sergeeva YE, Galanina L, Mysyakina I, Ivashechkin A, Bogdan V, Feofilova E (2013) Biodiesel fuel production from lipids of filamentous fungi. Appl Biochem Microbiol 49:46–52CrossRefGoogle Scholar
  165. Lynd L, Weimer P, van Zyl W, Pretorius I (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577CrossRefGoogle Scholar
  166. Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70:1–15CrossRefGoogle Scholar
  167. Ma C, Wang X, Guo L, Wu X, Yang H (2012) Enhanced photo-fermentative hydrogen production by Rhodobacter capsulatus with pigment content manipulation. Bioresour Technol 118:490–495. Scholar
  168. Maceiras R, Rodrı M, Cancela A, Urréjola S, Sánchez A (2011) Macroalgae: raw material for biodiesel production. Appl Energy 88:3318–3323CrossRefGoogle Scholar
  169. Makkar HP, Becker K (2009) Jatropha curcas, a promising crop for the generation of biodiesel and value-added coproducts. Eur J Lipid Sci Technol 111:773–787CrossRefGoogle Scholar
  170. Markou G, Angelidaki I, Nerantzis E, Georgakakis D (2013) Bioethanol production by carbohydrate-enriched biomass of Arthrospira (Spirulina) platensis. Energies 6:3937–3950CrossRefGoogle Scholar
  171. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energy Rev 14:217–232CrossRefGoogle Scholar
  172. McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83:37–46CrossRefGoogle Scholar
  173. McNeely K, Xu Y, Bennette N, Bryant DA, Dismukes GC (2010) Redirecting reductant flux into hydrogen production via metabolic engineering of fermentative carbon metabolism in a cyanobacterium. Appl Environ Microbiol 76:5032–5038CrossRefGoogle Scholar
  174. Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M (2009) Biodiesel production from oleaginous microorganisms. Renew Energ 34:1–5. Scholar
  175. Mes-Hartree M, Yu E, Reid I, Saddler J (1987) Suitability of aspenwood biologically delignified with Pheblia tremellosus for fermentation to ethanol or butanediol. Appl Microbiol Biotechnol 26:120–125CrossRefGoogle Scholar
  176. Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496CrossRefGoogle Scholar
  177. Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97:841–846CrossRefGoogle Scholar
  178. Min H, Sherman LA (2010) Hydrogen production by the unicellular, diazotrophic cyanobacterium Cyanothece sp. strain ATCC 51142 under conditions of continuous light. Appl Environ Microbiol 76:4293–4301CrossRefGoogle Scholar
  179. Mohanty SK (2013) A Production of biodiesel from rice bran oil and experimenting on small capacity diesel engine. Int J Mod Eng Res 3:920–923Google Scholar
  180. Moreira JR (2006) Global biomass energy potential. Mitig Adapt Strat Glob Change 11:313–342CrossRefGoogle Scholar
  181. Mussgnug JH, Klassen V, Schlüter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150:51–56CrossRefGoogle Scholar
  182. Naik P, Katpatal D (2013) Optimization of effective parameters of Pongamia pinnata (Karanja) biodiesel using Taguchi method. Int J Eng Res Appl 3:701–706Google Scholar
  183. Nakagawa H, Harada T, Ichinose T, Takeno K, Matsumoto S, Kobayashi M, Sakai M (2007) Biomethanol production and CO2 emission reduction from forage grasses, trees, and crop residues. Jpn Agric Res 41:173–180CrossRefGoogle Scholar
  184. Nguyen MT, Choi SP, Lee J, Lee JH, Sim SJ (2009) Hydrothermal acid pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. J Microbiol Biotechnol 19:161–166CrossRefGoogle Scholar
  185. Olivieri G, Marzocchella A, Andreozzi R, Pinto G, Pollio A (2011) Biodiesel production from Stichococcus strains at laboratory scale. J Chem Technol Biotechnol 86:776–783CrossRefGoogle Scholar
  186. Olson SN, Ritter K, Rooney W, Kemanian A, McCarl BA, Zhang Y, Hall S, Packer D, Mullet J (2012) High biomass yield energy sorghum: developing a genetic model for C4 grass bioenergy crops. Biofuel Bioprod Bioref 6:640–655CrossRefGoogle Scholar
  187. Ou MS, Mohammed N, Ingram L, Shanmugam K (2009) Thermophilic Bacillus coagulans requires less cellulases for simultaneous saccharification and fermentation of cellulose to products than mesophilic microbial biocatalysts. Appl Biochem Biotechnol 155:76–82CrossRefGoogle Scholar
  188. Palomo-Briones R, Razo-Flores E, Bernet N, Trably E (2017) Dark-fermentative biohydrogen pathways and microbial networks in continuous stirred tank reactors: novel insights on their control. Appl Energy 198:77–87CrossRefGoogle Scholar
  189. Pampulha ME, Loureiro-Dias MC (2000) Energetics of the effect of acetic acid on growth of Saccharomyces cerevisiae. FEMS Microbiol Lett 184:69–72CrossRefGoogle Scholar
  190. Pandey A (2008) Handbook of plant-based biofuels. CRC press,Google Scholar
  191. Pandey RK, Tewari L (2018) Mycotechnology for lignocellulosic bioethanol production: an emerging approach to sustainable environment. In: Microbial biotechnology in environmental monitoring and cleanup. IGI Global, pp 28–43Google Scholar
  192. Panigrahi N, Mohanty MK, Mishra SR, Mohanty RC (2014) Performance, emission, energy, and exergy analysis of a C.I. engine using mahua biodiesel blends with diesel. International Scholarly Research Notices 2014:1–13Google Scholar
  193. Parawira W (2010) Biodiesel production from Jatropha curcas: A review. Scientific Research and Essays 5(14):1796–1808Google Scholar
  194. Parfitt J (2010) Food waste within food supply chains: quantification and potential for change to 2050, 27 Phil. Trans Royal Soc Brit 3065:3077Google Scholar
  195. Park M-O (2005) New pathway for long-chain n-alkane synthesis via 1-alcohol in Vibrio furnissii M1. J Bacteriol 187:1426–1429CrossRefGoogle Scholar
  196. Parkash A (2016) Microbial fuel cells: a source of bioenergy. J Microb Biochem Technol 8:247–255CrossRefGoogle Scholar
  197. Parrish DJ, Fike JH (2005) The biology and agronomy of switchgrass for biofuels. Crit Rev Plant Sci 24:423–459. Scholar
  198. Parshina S, Kijlstra S, Henstra A, Sipma J, Plugge C, Stams A (2005a) Carbon monoxide conversion by thermophilic sulfate-reducing bacteria in pure culture and in co-culture with Carboxydothermus hydrogenoformans. Appl Microbiol Biotechnol 68:390–396CrossRefGoogle Scholar
  199. Parshina SN, Sipma J, Nakashimada Y, Henstra AM, Smidt H, Lysenko AM, Lens PN, Lettinga G, Stams AJ (2005b) Desulfotomaculum carboxydivorans sp. nov., a novel sulfate-reducing bacterium capable of growth at 100% CO. Int J Syst Evol Microbiol 55:2159–2165CrossRefGoogle Scholar
  200. Phan AN, Phan TM (2008) Biodiesel production from waste cooking oils. Fuel 87:3490–3496. Scholar
  201. Prasad S, Singh A, Jain N, Joshi H (2007a) Ethanol production from sweet sorghum syrup for utilization as automotive fuel in India. Energy Fuel 21:2415–2420CrossRefGoogle Scholar
  202. Prasad S, Singh A, Joshi H (2007b) Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resources, Cons Recy 50:1–39CrossRefGoogle Scholar
  203. Procentese A, Raganati F, Olivieri G, Russo ME, Marzocchella A (2017) Pre-treatment and enzymatic hydrolysis of lettuce residues as feedstock for bio-butanol production. Biomass Bioenergy 96:172–179CrossRefGoogle Scholar
  204. Qureshi N, Saha BC, Dien B, Hector RE, Cotta MA (2010) Production of butanol (a biofuel) from agricultural residues: part I-use of barley straw hydrolysate. Biomass Bioenergy 34:559–565CrossRefGoogle Scholar
  205. Rahman S, Masdar M, Rosli M, Majlan E, Husaini T (2015) Overview of biohydrogen production technologies and application in fuel cell. Am J Chem 5:13–23Google Scholar
  206. Rajagopalan S, Datar RP, Lewis RS (2002) Formation of ethanol from carbon monoxide via a new microbial catalyst. Biomass Bioenergy 23:487–493CrossRefGoogle Scholar
  207. Rana KL, Kour D, Sheikh I, Dhiman A, Yadav N, Yadav AN, Rastegari AA, Singh K, Saxena AK (2019a) Endophytic fungi: biodiversity, ecological significance and potential industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through fungi: Volume 1: Diversity and enzymes perspectives. Springer International Publishing, Switzerland, pp 1–62Google Scholar
  208. Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V, Singh BP, Dhaliwal HS, Saxena AK (2019b) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in endophytic fungal research: present status and future challenges. Springer International Publishing, Cham, pp 105–144.
  209. Rao AR, Dayananda C, Sarada R, Shamala T, Ravishankar G (2007) Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresour Technol 98:560–564CrossRefGoogle Scholar
  210. Rashid U, Anwar F, Jamil A, Bhatti HN (2010) Jatropha curcas seed oil as a viable source for biodiesel. Pak J Bot 42:575–582Google Scholar
  211. Razon LF, Tan RR (2011) Net energy analysis of the production of biodiesel and biogas from the microalgae: Haematococcus pluvialis and Nannochloropsis. Appl Energy 88:3507–3514CrossRefGoogle Scholar
  212. Razzak SA, Hossain MM, Lucky RA, Bassi AS, de Lasa H (2013) Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—a review. Renew Sust Energy Rev 27:622–653CrossRefGoogle Scholar
  213. Reddy CA, D’Souza TM (1994) Physiology and molecular biology of the lignin peroxidases of Phanerochaete chrysosporium. FEMS Microbiol Rev 13:137–152CrossRefGoogle Scholar
  214. Reddy BV, Ramesh S, Reddy PS, Ramaiah B, Salimath M, Kachapur R (2005) Sweet sorghum-a potential alternate raw material for bio-ethanol and bio-energy. Int Sorghum Millets News 46:79–86Google Scholar
  215. Reddy A, Saleh A, Islam M, Hamdan S (2017) Active razor shell CaO catalyst synthesis for Jatropha methyl ester production via optimized two-step transesterification. J Chem
  216. Ren NQ, Liu BF, Zheng GX, Xing DF, Zhao X, Guo WQ, Ding J (2009) Strategy for enhancing photo-hydrogen production yield by repeated fed-batch cultures. Int J Hydrog Energy 34:7579–7584. Scholar
  217. Rodionova M, Poudyal R, Tiwari I, Voloshin R, Zharmukhamedov S, Nam H, Zayadan B, Bruce B, Hou H, Allakhverdiev S (2017) Biofuel production: challenges and opportunities. Int J Hydrog Energy 42:8450–8461CrossRefGoogle Scholar
  218. Rooney WL, Blumenthal J, Bean B, Mullet JE (2007) Designing sorghum as a dedicated bioenergy feedstock. Biofuel Bioprod Bioref 1:147–157CrossRefGoogle Scholar
  219. Ruan Z, Zanotti M, Wang X, Ducey C, Liu Y (2012) Evaluation of lipid accumulation from lignocellulosic sugars by Mortierella isabellina for biodiesel production. Bioresour Technol 110:198–205CrossRefGoogle Scholar
  220. Sahay H, Yadav AN, Singh AK, Singh S, Kaushik R, Saxena AK (2017) Hot springs of Indian Himalayas: potential sources of microbial diversity and thermostable hydrolytic enzymes. 3 Biotech 7:1–11Google Scholar
  221. Sanderson M, Reed R, McLaughlin S, Wullschleger S, Conger B, Parrish D, Wolf D, Taliaferro C, Hopkins A, Ocumpaugh W (1996) Switchgrass as a sustainable bioenergy crop. Bioresour Technol 56:83–93CrossRefGoogle Scholar
  222. Sanderson MA, Adler PR, Boateng AA, Casler MD, Sarath G (2006) Switchgrass as a biofuels feedstock in the USA. Can J Plant Sci 86:1315–1325CrossRefGoogle Scholar
  223. Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energy 37:19–27CrossRefGoogle Scholar
  224. Savage MD, Wu Z, Daniel SL, Lundie LL, Drake HL (1987) Carbon monoxide-dependent chemolithotrophic growth of Clostridium thermoautotrophicum. Appl Environ Microbiol 53:1902–1906Google Scholar
  225. Sawada T, Nakamura Y, Kobayashi F, Kuwahara M, Watanabe T (1995) Effects of fungal pretreatment and steam explosion pretreatment on enzymatic saccharification of plant biomass. Biotechnol Bioeng 48:719–724CrossRefGoogle Scholar
  226. Saxena AK, Yadav AN, Rajawat M, Kaushik R, Kumar R, Kumar M, Prasanna R, Shukla L (2016) Microbial diversity of extreme regions: an unseen heritage and wealth. Indian J Plant Genet Resour 29:246–248CrossRefGoogle Scholar
  227. Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43CrossRefGoogle Scholar
  228. Schubert C (2006) Can biofuels finally take center stage? Nat Biotechnol 24:777CrossRefGoogle Scholar
  229. Scott PT, Pregelj L, Chen N, Hadler JS, Djordjevic MA, Gresshoff PM (2008) Pongamia pinnata: an untapped resource for the biofuels industry of the future. Bioenergy Res 1:2–11CrossRefGoogle Scholar
  230. Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21:277–286CrossRefGoogle Scholar
  231. Seifert K, Waligorska M, Laniecki M (2010) Brewery wastewaters in photobiological hydrogen generation in presence of Rhodobacter sphaeroides O.U. 001. Int J Hydrog Energy 35:4085–4091. Scholar
  232. Sekoai P, Kana EG (2013) A two-stage modelling and optimization of biohydrogen production from a mixture of agro-municipal waste. Int J Hydrog Energy 38:8657–8663CrossRefGoogle Scholar
  233. Sen B, Chou YP, Wu SY, Liu CM (2016) Pretreatment conditions of rice straw for simultaneous hydrogen and ethanol fermentation by mixed culture. Int J Hydrog Energy 41:4421–4428CrossRefGoogle Scholar
  234. Sergeeva YE, Galanina L, Andrianova D, Feofilova E (2008) Lipids of filamentous fungi as a material for producing biodiesel fuel. Appl Biochem Microbiol 44:523–527CrossRefGoogle Scholar
  235. Shafiee S, Topal E (2009) When will fossil fuel reserves be diminished? Energy Policy 37:181–189CrossRefGoogle Scholar
  236. Shamsul N, Kamarudin SK, Rahman NA, Kofli NT (2014) An overview on the production of bio-methanol as potential renewable energy. Renew Sust Energy Rev 33:578–588CrossRefGoogle Scholar
  237. Sharma Y, Singh B, Upadhyay S (2008) Advancements in development and characterization of biodiesel: a review. Fuel 87:2355–2373CrossRefGoogle Scholar
  238. Shaw AJ, Podkaminer KK, Desai SG, Bardsley JS, Rogers SR, Thorne PG, Hogsett DA, Lynd LR (2008) Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc Nat Acad Sci 105(37):13769–13774.
  239. Sheikh MMI, Kim CH, Park HH, Nam HG, Lee GS, Jo HS, Lee JY, Kim JW (2015) A synergistic effect of pretreatment on cell wall structural changes in barley straw (Hordeum vulgare L.) for efficient bioethanol production. J Sci Food Agric 95:843–850CrossRefGoogle Scholar
  240. Sheldon RA (2018) Enzymatic conversion of first-and second-generation sugars. In: biomass and green chemistry. Springer, pp 169–189Google Scholar
  241. Shen G-J, Shieh J-S, Grethlein A, Jain M, Zeikus J (1999) Biochemical basis for carbon monoxide tolerance and butanol production by Butyribacterium methylotrophicum. Appl Microbiol Biotechnol 51:827–832CrossRefGoogle Scholar
  242. Shi J, Sharma-Shivappa RR, Chinn M, Howell N (2009) Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production. Biomass Bioenergy 33:88–96CrossRefGoogle Scholar
  243. Show KY, Lee DJ, Zhang ZP (2011) Production of biohydrogen: current perspectives and future prospects. In: Biofuels. Elsevier, pp 467–479Google Scholar
  244. Shrestha P, Rasmussen M, Khanal SK, Pometto Iii AL, van Leeuwen J (2008) Solid-substrate fermentation of corn fiber by Phanerochaete chrysosporium and subsequent fermentation of hydrolysate into ethanol. J Agric Food Chem 56:3918–3924CrossRefGoogle Scholar
  245. Siaut M, Cuiné S, Cagnon C, Fessler B, Nguyen M, Carrier P, Beyly A, Beisson F, Triantaphylidès C, Li-Beisson Y (2011) Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol 11:7CrossRefGoogle Scholar
  246. Sims RE (2004) Biomass, bioenergy and biomaterials: future prospects. Biomass and agriculture–sustainability markets and policies OECD, Paris, 37–61Google Scholar
  247. Sims RE, Hastings A, Schlamadinger B, Taylor G, Smith P (2006) Energy crops: current status and future prospects. Glob Change Biol 12:2054–2076CrossRefGoogle Scholar
  248. Singh A, Pant D, Korres NE, Nizami A-S, Prasad S, Murphy JD (2010) Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: challenges and perspectives. Bioresour Technol 101:5003–5012CrossRefGoogle Scholar
  249. Singh RN, Gaba S, Yadav AN, Gaur P, Gulati S, Kaushik R, Saxena AK (2016) First, high quality draft genome sequence of a plant growth promoting and cold active enzymes producing psychrotrophic Arthrobacter agilis strain L77. Stand Genomic Sci 11:54. Scholar
  250. Sinha S, Agarwal AK, Garg S (2008) Biodiesel development from rice bran oil: Transesterification process optimization and fuel characterization. Energy Conv Manag 49:1248–1257CrossRefGoogle Scholar
  251. Sivamani S, Chandrasekaran AP, Balajii M, Shanmugaprakash M, Hosseini-Bandegharaei A, Baskar R (2018) Evaluation of the potential of cassava-based residues for biofuels production. Rev Environ Sci Bio/Technol 17:553–570CrossRefGoogle Scholar
  252. Slepova TV, Sokolova TG, Lysenko AM, Tourova TP, Kolganova TV, Kamzolkina OV, Karpov GA, Bonch-Osmolovskaya EA (2006) Carboxydocella sporoproducens sp. nov., a novel anaerobic CO-utilizing/H2-producing thermophilic bacterium from a Kamchatka hot spring. Int J Syst Evol Microbiol 56:797–800CrossRefGoogle Scholar
  253. Sokolova T, Gonzalez J, Kostrikina N, Chernyh N, Tourova T, Kato C, Bonch-Osmolovskaya E, Robb F (2001) Carboxydobrachium pacificum gen. nov., sp. nov., a new anaerobic, thermophilic, CO-utilizing marine bacterium from Okinawa Trough. Int J Syst Evol Microbiol 51:141–149CrossRefGoogle Scholar
  254. Sokolova T, Kostrikina N, Chernyh N, Tourova T, Kolganova T, Bonch-Osmolovskaya E (2002) Carboxydocella thermautotrophica gen. nov., sp. nov., a novel anaerobic, CO-utilizing thermophile from a Kamchatkan hot spring. Int J Syst Evol Microbiol 52:1961–1967Google Scholar
  255. Sokolova TG, Gonzalez JM, Kostrikina NA, Chernyh NA, Slepova TV, Bonch-Osmolovskaya EA, Robb FT (2004) Thermosinus carboxydivorans gen. nov., sp. nov., a new anaerobic, thermophilic, carbon-monoxide-oxidizing, hydrogenogenic bacterium from a hot pool of Yellowstone National Park. Int J Syst Evol Microbiol 54:2353–2359CrossRefGoogle Scholar
  256. Sokolova TG, Kostrikina NA, Chernyh NA, Kolganova TV, Tourova TP, Bonch-Osmolovskaya EA (2005) Thermincola carboxydiphila gen. nov., sp. nov., a novel anaerobic, carboxydotrophic, hydrogenogenic bacterium from a hot spring of the Lake Baikal area. Int J Syst Evol Microbiol 55:2069–2073CrossRefGoogle Scholar
  257. Sokolova T, Hanel J, Onyenwoke R, Reysenbach A-L, Banta A, Geyer R, González J, Whitman WB, Wiegel J (2007) Novel chemolithotrophic, thermophilic, anaerobic bacteria Thermolithobacter ferrireducens gen. nov., sp. nov. and Thermolithobacter carboxydivorans sp. nov. Extremophiles 11:145–157CrossRefGoogle Scholar
  258. Solovchenko A, Khozin-Goldberg I, Didi-Cohen S, Cohen Z, Merzlyak M (2008) Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa. J Appl Phycol 20:245–251CrossRefGoogle Scholar
  259. Somashekar D, Venkateshwaran G, Sambaiah K, Lokesh B (2003) Effect of culture conditions on lipid and gamma-linolenic acid production by mucoraceous fungi. Proc Biochem 38:1719–1724CrossRefGoogle Scholar
  260. Srivastava A, Prasad R (2000) Triglycerides-based diesel fuels. Renew Sust Energy Rev 4:111–133CrossRefGoogle Scholar
  261. Stewart JR, Toma Y, Fernandez FG, Nishiwaki A, Yamada T, Bollero G (2009) The ecology and agronomy of Miscanthus sinensis, a species important to bioenergy crop development, in its native range in Japan: a review. Gcb Bioenergy 1:126–153CrossRefGoogle Scholar
  262. Strobel GA, Knighton B, Kluck K, Ren Y, Livinghouse T, Griffin M, Spakowicz D, Sears J (2008) The production of myco-diesel hydrocarbons and their derivatives by the endophytic fungus Gliocladium roseum (NRRL 50072). Microbiology 154:3319–3328CrossRefGoogle Scholar
  263. Su CH, Chien LJ, Gomes J, Lin YS, Yu YK, Liou J-S, Syu R-J (2011) Factors affecting lipid accumulation by Nannochloropsis oculata in a two-stage cultivation process. J Appl Phycol 23:903–908CrossRefGoogle Scholar
  264. Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh D, Abhilash P, Prabha R (eds) microbial inoculants in sustainable agricultural productivity, research perspectives. Springer, India, pp 117–143.
  265. Suntana AS, Vogt KA, Turnblom EC, Upadhye R (2009) Bio-methanol potential in Indonesia: forest biomass as a source of bio-energy that reduces carbon emissions. Appl Energy 86:S215–S221CrossRefGoogle Scholar
  266. Surriya O, Saleem SS, Waqar K, Kazi AG, Öztürk M (2015) Bio-fuels: a blessing in disguise. In: Phytoremediation for green energy. Springer, pp 11–54Google Scholar
  267. Svetlichnyi V, Sokolova T, Kostrikina N, Lysenko A (1994) Carboxydothermus restrictus sp. nov—a new thermophilic anaerobic carboxydotrophic bacterium. Mikrobiologiya 63:523–528Google Scholar
  268. Svetlitchnyi V, Peschel C, Acker G, Meyer O (2001) Two membrane-associated NiFeS-carbon monoxide dehydrogenases from the anaerobic carbon-monoxide-utilizing Eubacterium Carboxydothermus hydrogenoformans. J Bacteriol 183:5134–5144CrossRefGoogle Scholar
  269. Taha EM, Omar O, Yusoff WMW, Hamid AA (2010) Lipid biosynthesis in Cunninghamella bainieri 2A1 in N-limited and N-excess media. Ann Microbiol 60:615–622CrossRefGoogle Scholar
  270. Tanaka K, Tamamushi R, Ogawa T (1985) Bioelectrochemical fuel-cells operated by the cyanobacterium, Anabaena variabilis. J Chem Technol Biotechnol Biotechnol 35:191–197CrossRefGoogle Scholar
  271. Tang H, Abunasser N, Garcia M, Chen M, Ng KS, Salley SO (2011) Potential of microalgae oil from Dunaliella tertiolecta as a feedstock for biodiesel. Appl Energy 88:3324–3330CrossRefGoogle Scholar
  272. Taniguchi M, Suzuki H, Watanabe D, Sakai K, Hoshino K, Tanaka T (2005) Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. J Biosci Bioeng 100:637–643CrossRefGoogle Scholar
  273. Tanner RS, Miller LM, Yang D (1993) Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. Int J Syst Evol Microbiol 43:232–236Google Scholar
  274. Tao Y, He Y, Wu Y, Liu F, Li X, Zong W, Zhou Z (2008) Characteristics of a new photosynthetic bacterial strain for hydrogen production and its application in wastewater treatment. Int J Hydrog Energy 33:963–973. Scholar
  275. Tapanes NCO, Aranda DAG, de Mesquita Carneiro JW, Antunes OAC (2008) Transesterification of Jatropha curcas oil glycerides: theoretical and experimental studies of biodiesel reaction. Fuel 87:2286–2295CrossRefGoogle Scholar
  276. Tesso TT, Claflin LE, Tuinstra MR (2005) Analysis of stalk rot resistance and genetic diversity among drought tolerant sorghum genotypes. Crop Sci 45:645–652CrossRefGoogle Scholar
  277. Tian Y, Zhao L, Meng H, Sun L, Yan J (2009) Estimation of un-used land potential for biofuels development in (the) People’s Republic of China. Appl Energy 86:S77–S85CrossRefGoogle Scholar
  278. Tian X, Liao Q, Zhu X, Wang Y, Zhang P, Li J, Wang H (2010) Characteristics of a biofilm photobioreactor as applied to photo-hydrogen production. Bioresour Technol 101:977–983. Scholar
  279. Tomes D, Lakshmanan P, Songstad D (2010) Biofuels: global impact on renewable energy, production agriculture, and technological advancements. Springer Science & Business MediaGoogle Scholar
  280. Tran DT, Yeh KL, Chen CL, Chang JS (2012) Enzymatic transesterification of microalgal oil from Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized Burkholderia lipase. Bioresour Technol 108:119–127CrossRefGoogle Scholar
  281. Tran DT, Chen CL, Chang JS (2013) Effect of solvents and oil content on direct transesterification of wet oil-bearing microalgal biomass of Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized lipase as the biocatalyst. Bioresour Technol 135:213–221CrossRefGoogle Scholar
  282. Tsujimura S, Wadano A, Kano K, Ikeda T (2001) Photosynthetic bioelectrochemical cell utilizing cyanobacteria and water-generating oxidase. Enzy Microb Technol 29:225–231CrossRefGoogle Scholar
  283. Uffen RL (1976) Anaerobic growth of a Rhodopseudomonas species in the dark with carbon monoxide as sole carbon and energy substrate. Proc Nat Acad Sci 73:3298–3302CrossRefGoogle Scholar
  284. Umakanth A, Kumar AA, Vermerris W, Tonapi V (2019) Sweet sorghum for biofuel industry. In: Breeding sorghum for diverse end uses. Elsevier, pp 255–270Google Scholar
  285. Uyar B, Eroglu I, Yücel M, Gündüz U (2009) Photofermentative hydrogen production from volatile fatty acids present in dark fermentation effluents. Int J Hydrog Energy 34:4517–4523CrossRefGoogle Scholar
  286. Uzoejinwa BB, He X, Wang S, Abomohra AEF, Hu Y, Wang Q (2018) Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: recent progress and future directions elsewhere worldwide. Energy Conv Manag 163:468–492CrossRefGoogle Scholar
  287. van Leeuwen BN, van der Wulp AM, Duijnstee I, van Maris AJ, Straathof AJ (2012) Fermentative production of isobutene. Appl Microbiol Biotechnol 93:1377–1387CrossRefGoogle Scholar
  288. Varel V, Chen T, Hashimoto A (1988) Thermophilic and mesophilic methane production from anaerobic degradation of the cyanobacterium Spirulina maxima. Resour Con Recy 1:19–26CrossRefGoogle Scholar
  289. Verma P, Yadav AN, Kazy SK, Saxena AK, Suman A (2014) Evaluating the diversity and phylogeny of plant growth promoting bacteria associated with wheat (Triticum aestivum) growing in central zone of India. Int J Curr Microbiol Appl Sci 3:432–447Google Scholar
  290. Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016) Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56:44–58.
  291. Verma P, Yadav AN, Kumar V, Singh DP, Saxena AK (2017) Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crops improvement. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives. Springer Nature, Singapore, pp 543–580.
  292. Vermerris W, Saballos A, Ejeta G, Mosier NS, Ladisch MR, Carpita NC (2007) Molecular breeding to enhance ethanol production from corn and sorghum stover. Crop Sci 47:S-142–S-153Google Scholar
  293. Voloshin RA, Kreslavski VD, Zharmukhamedov SK, Bedbenov VS, Ramakrishna S, Allakhverdiev SI (2015) Photoelectrochemical cells based on photosynthetic systems: a review. Biofuel Res J 2:227–235CrossRefGoogle Scholar
  294. Voloshin RA, Rodionova MV, Zharmukhamedov SK, Veziroglu TN, Allakhverdiev SI (2016) Biofuel production from plant and algal biomass. Int J Hydrog Energy 41:17257–17273CrossRefGoogle Scholar
  295. Wan M, Liu P, Xia J, Rosenberg JN, Oyler GA, Betenbaugh MJ, Nie Z, Qiu G (2011) The effect of mixotrophy on microalgal growth, lipid content, and expression levels of three pathway genes in Chlorella sorokiniana. Appl Microbiol Biotechnol 91:835–844CrossRefGoogle Scholar
  296. Wang LS, Ge XY, Zhang WG (2007) Improvement of ethanol yield from raw corn flour by Rhizopus sp. World J Microbiol Biotechnol 23:461–465CrossRefGoogle Scholar
  297. Wang D, Portis AR, Moose SP, Long SP (2008) Cool C4 photosynthesis: pyruvate Pi dikinase expression and activity corresponds to the exceptional cold tolerance of carbon assimilation in Miscanthus giganteus. Plant Physiol 148:557–567CrossRefGoogle Scholar
  298. Wang S, Sun X, Yuan Q (2018) Strategies for enhancing microbial tolerance to inhibitors for biofuel production: a review. Bioresour Technol 258:302–309. Scholar
  299. Weijde Tvd, Alvim Kamei CL, Torres AF, Vermerris W, Dolstra O, Visser RGF, Trindade LM (2013) The potential of C4 grasses for cellulosic biofuel production. Front Plant Sci 4:107Google Scholar
  300. Welker C, Balasubramanian V, Petti C, Rai K, DeBolt S, Mendu V (2015) Engineering plant biomass lignin content and composition for biofuels and bioproducts. Energies 8:7654–7676CrossRefGoogle Scholar
  301. Wen Z, Wu M, Lin Y, Yang L, Lin J, Cen P (2014) Artificial symbiosis for acetone-butanol-ethanol (ABE) fermentation from alkali extracted deshelled corn cobs by co-culture of Clostridium beijerinckii and Clostridium cellulovorans. Microb Cell Fact 13:92CrossRefGoogle Scholar
  302. Wynn JP, Hamid AA, Li Y, Ratledge C (2001) Biochemical events leading to the diversion of carbon into storage lipids in the oleaginous fungi Mucor circinelloides and Mortierella alpina. Microbiology 147:2857–2864CrossRefGoogle Scholar
  303. Xie GJ, Liu BF, Guo WQ, Ding J, Xing DF, Nan J, Ren HY, Ren NQ (2012) Feasibility studies on continuous hydrogen production using photo-fermentative sequencing batch reactor. Int J Hydrog Energy 37:13689–13695. Scholar
  304. Xie GJ, Liu BF, Wen HQ, Li Q, Yang CY, Han WL, Nan J, Ren NQ (2013) Bioflocculation of photo-fermentative bacteria induced by calcium ion for enhancing hydrogen production. Int J Hydrog Energy 38:7780–7788. Scholar
  305. Xu R, Mi Y (2011) Simplifying the process of microalgal biodiesel production through in situ transesterification technology. J Am Oil Chem So 88:91–99CrossRefGoogle Scholar
  306. Xu C, Ma F, Zhang X, Chen S (2010) Biological pretreatment of corn stover by Irpex lacteus for enzymatic hydrolysis. J Agric Food Chem 58:10893–10898CrossRefGoogle Scholar
  307. Xu GC, Ding JC, Han RZ, Dong JJ, Ni Y (2016) Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation. Bioresour Technol 203:364–369CrossRefGoogle Scholar
  308. Yadav AN (2015) Bacterial diversity of cold deserts and mining of genes for low temperature tolerance. PhD thesis, IARI, New Delhi/BIT, Ranchi pp 234.
  309. Yadav AN (2017) Agriculturally important microbiomes: biodiversity and multifarious pgp attributes for amelioration of diverse abiotic stresses in crops for sustainable agriculture. Biomed J Sci Tech Res 1:1–4Google Scholar
  310. Yadav AN (2018) Biodiversity and biotechnological applications of host-specific endophytic fungi for sustainable agriculture and allied sectors. Acta Sci Microbiol 1:01–05Google Scholar
  311. Yadav AN, Saxena AK (2018) Biodiversity and biotechnological applications of halophilic microbes for sustainable agriculture. J Appl Biol Biotechnol 6:1–8Google Scholar
  312. Yadav AN, Yadav N (2018) Stress-adaptive microbes for plant growth promotion and alleviation of drought stress in plants. Acta Sci Agric 2:85–88Google Scholar
  313. Yadav AN, Sachan SG, Verma P, Saxena AK (2015a) Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng 119:683–693CrossRefGoogle Scholar
  314. Yadav AN, Sachan SG, Verma P, Tyagi SP, Kaushik R, Saxena AK (2015b) Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World J Microbiol Biotechnol 31:95–108CrossRefGoogle Scholar
  315. Yadav AN, Verma P, Kumar M, Pal KK, Dey R, Gupta A, Padaria JC, Gujar GT, Kumar S, Suman A, Prasanna R, Saxena AK (2015c) Diversity and phylogenetic profiling of niche-specific Bacilli from extreme environments of India. Ann Microbiol 65:611–629CrossRefGoogle Scholar
  316. Yadav AN, Sharma D, Gulati S, Singh S, Kaushik R, Dey R, Pal KK, Saxena AK (2015d) Haloarchaea endowed with phosphorus solubilization attribute implicated in phosphorus cycle. Sci Rep
  317. Yadav AN, Sachan SG, Verma P, Saxena AK (2016) Bioprospecting of plant growth promoting psychrotrophic Bacilli from cold desert of north western Indian Himalayas. Indian J Exp Biol 54:142–150Google Scholar
  318. Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B, Chauhan VS, Dhaliwal HS, Saxena AK (2017a) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:1–13CrossRefGoogle Scholar
  319. Yadav AN, Verma P, Kumar R, Kumar V, Kumar K (2017b) Current applications and future prospects of eco-friendly microbes. EU Voice 3:1–3Google Scholar
  320. Yadav AN, Verma P, Kumar V, Sachan SG, Saxena AK (2017c) Extreme cold environments: A suitable niche for selection of novel psychrotrophic microbes for biotechnological applications. Adv Biotechnol Microbiol 2:1–4CrossRefGoogle Scholar
  321. Yadav AN, Verma P, Sachan SG, Saxena AK (2017d) Biodiversity and biotechnological applications of psychrotrophic microbes isolated from Indian Himalayan regions. EC Microbiol ECO 01:48–54Google Scholar
  322. Yadav AN, Kumar V, Prasad R, Saxena AK, Dhaliwal HS (2018a) Microbiome in Crops: Diversity, distribution and potential role in crops improvements. In: Prasad R, Gill SS, Tuteja N (eds) Crop improvement through microbial biotechnology. Elsevier, USA, pp 305–332CrossRefGoogle Scholar
  323. Yadav AN, Verma P, Kumar S, Kumar V, Kumar M, Singh BP, Saxena AK, Dhaliwal HS (2018b) Actinobacteria from Rhizosphere: molecular diversity, distributions and potential biotechnological applications. In: Singh B, Gupta V, Passari A (eds) New and future developments in microbial biotechnol bioeng. USA, pp 13–41.
  324. Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N, Gupta VK, Saxena AK (2018c) Biodiversity of the Genus Penicillium in Different Habitats. In: Gupta VK, Rodriguez-Couto S (eds) New and future developments in microbial biotechnol bioeng, Penicillium System properties and applications. Elsevier, Amsterdam, pp 3–18.
  325. Yadav AN, Verma P, Sachan SG, Kaushik R, Saxena AK (2018d) Psychrotrophic microbiomes: molecular diversity and beneficial role in plant growth promotion and soil health. In: Panpatte DG, Jhala YK, Shelat HN, Vyas RV (eds) Microorganisms for green revolution-Volume 2: microbes for sustainable agro-ecosystem. Springer, Singapore, pp 197–240.
  326. Yadav AN, Mishra S, Singh S, Gupta A (2019a) Recent advancement in white biotechnology through fungi: Volume 1: diversity and enzymes perspectives. Springer International Publishing, SwitzerlandGoogle Scholar
  327. Yadav AN, Singh S, Mishra S, Gupta A (2019b) Recent advancement in white biotechnology through fungi: Volume 2: Perspective for value-added products and environments. Springer International Publishing, SwitzerlandGoogle Scholar
  328. Yan Y, Li X, Wang G, Gui X, Li G, Su F, Wang X, Liu T (2014) Biotechnological preparation of biodiesel and its high-valued derivatives: a review. Appl Energy 113:1614–1631CrossRefGoogle Scholar
  329. Yao S, Mikkelsen MJ (2010) Metabolic engineering to improve ethanol production in Thermoanaerobacter mathranii. Appl Microbiol Biotechnol 88:199–208CrossRefGoogle Scholar
  330. Yong-Hong L, Bo L, Zong-Bao Z, Feng-Wu B (2006) Optimization of culture conditions for lipid production by Rhodosporidium toruloides. Chin J Biotechnol 22:650–656CrossRefGoogle Scholar
  331. Yun Y-M, Lee M-K, Im S-W, Marone A, Trably E, Shin S-R, Kim M-G, Cho S-K, Kim D-H (2018) Biohydrogen production from food waste: current status, limitations, and future perspectives. Bioresour Technol 248:79–87CrossRefGoogle Scholar
  332. Zavarzina DG, Sokolova TG, Tourova TP, Chernyh NA, Kostrikina NA, Bonch-Osmolovskaya EA (2007) Thermincola ferriacetica sp. nov., a new anaerobic, thermophilic, facultatively chemolithoautotrophic bacterium capable of dissimilatory Fe (III) reduction. Extremophiles 11:1–7CrossRefGoogle Scholar
  333. Zhang X, Xu C, Wang H (2007a) Pretreatment of bamboo residues with Coriolus versicolor for enzymatic hydrolysis. J Biosci Bioeng 104:149–151CrossRefGoogle Scholar
  334. Zhang X, Yu H, Huang H, Liu Y (2007b) Evaluation of biological pretreatment with white rot fungi for the enzymatic hydrolysis of bamboo culms. Int Biodeteriorat Biodegrad 60:159–164CrossRefGoogle Scholar
  335. Zhang Y, Adams IP, Ratledge C (2007c) Malic enzyme: the controlling activity for lipid production? Overexpression of malic enzyme in Mucor circinelloides leads to a 2.5-fold increase in lipid accumulation. Microbiology 153:2013–2025CrossRefGoogle Scholar
  336. Zhang M, Wang F, Su R, Qi W, He Z (2010) Ethanol production from high dry matter corncob using fed-batch simultaneous saccharification and fermentation after combined pretreatment. Bioresour Technol 101:4959–4964CrossRefGoogle Scholar
  337. Zhang L, Li X, Yong Q, Yang ST, Ouyang J, Yu S (2016a) Impacts of lignocellulose-derived inhibitors on L-lactic acid fermentation by Rhizopus oryzae. Bioresour Technol 203:173–180CrossRefGoogle Scholar
  338. Zhang SC, Lai QH, Lu Y, Liu ZD, Wang TM, Zhang C, Xing XH (2016b) Enhanced biohydrogen production from corn stover by the combination of Clostridium cellulolyticum and hydrogen fermentation bacteria. J Biosci Bioeng 122:482–487CrossRefGoogle Scholar
  339. Zhang Z, O’Hara IM, Mundree S, Gao B, Ball AS, Zhu N, Bai Z, Jin B (2016c) Biofuels from food processing wastes. Curr Opin Biotechnol 38:97–105CrossRefGoogle Scholar
  340. Zhao R, Bean S, Wang D, Park SH, Schober T, Wilson J (2009) Small-scale mashing procedure for predicting ethanol yield of sorghum grain. J Cereal Sci 49:230–238CrossRefGoogle Scholar
  341. Zheng Y, Yu X, Zeng J, Chen S (2012) Feasibility of filamentous fungi for biofuel production using hydrolysate from dilute sulfuric acid pretreatment of wheat straw. Biotechnol Biofuel 5:50CrossRefGoogle Scholar
  342. Zhu H, Fang HH, Zhang T, Beaudette LA (2007) Effect of ferrous ion on photo heterotrophic hydrogen production by Rhodobacter sphaeroides. Int J Hydrog Energy 32:4112–4118CrossRefGoogle Scholar
  343. Zhuang Q, Qin Z, Chen M (2013) Biofuel, land and water: maize, switchgrass or Miscanthus? Environ Res Lett 8:015020CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Divjot Kour
    • 1
  • Kusam Lata Rana
    • 1
  • Neelam Yadav
    • 2
  • Ajar Nath Yadav
    • 1
    Email author
  • Ali Asghar Rastegari
    • 3
  • Chhatarpal Singh
    • 4
  • Puneet Negi
    • 1
  • Karan Singh
    • 1
  • Anil Kumar Saxena
    • 5
  1. 1.Eternal University, Baru SahibSirmourIndia
  2. 2.Gopi Nath P.G. College, Veer Bahadur Singh Purvanchal University, Deoli-SalamatpurGhazipurIndia
  3. 3.Falavarjan Branch, Islamic Azad UniversityIsfahanIran
  4. 4.Department of Environmental Microbiology, School for Environmental SciencesBabasaheb Bhimrao Ambedkar UniversityLucknowIndia
  5. 5.ICAR-National Bureau of Agriculturally Important MicroorganismsKushmaur, MauIndia

Personalised recommendations