Skip to main content

Will We Still Need Radiotherapy in 20 Years?

  • Chapter
  • First Online:
MRI for Radiotherapy

Abstract

Twelve million new cases of cancer will need radiotherapy by 2035 using our current techniques. A million lives per year could be saved if they all received treatment. MRI will identify new biomarkers that will lead to better adaption to the biological heterogeneity of cancer. MRI guidance will open up new indications for primary tumours such as the liver and pancreas. It offers the chance to prolong and improve life for patients with metastatic disease.

Prediction is very difficult, especially about the future

Niels Bohr

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atun R, Jaffray D, Barton M, Baumann M, Vikram B, Bray F, et al.. Responding to the cancer crisis: expanding global access to radiotherapy: a Lancet Oncology Commission. European Cancer Congress; 2015.

    Google Scholar 

  • Barbaro B, Vitale R, Valentini V, Illuminati S, Vecchio FM, Rizzo G, et al. Diffusion-weighted magnetic resonance imaging in monitoring rectal cancer response to neoadjuvant chemoradiotherapy. Int J Radiat Oncol Biol Phys. 2012;83(2):594–9.

    Article  Google Scholar 

  • Barton MB, Frommer M, Shafiq J. The role of radiotherapy in cancer control in low- and middle-income countries. Lancet Oncol. 2006;7(7):584–95.

    Article  Google Scholar 

  • Barton MB, Jacob S, Shafiq J, Wong K, Thompson SR, Hanna TP, et al. Estimating the demand for radiotherapy from the evidence: a review of changes from 2003 to 2012. Radiother Oncol. 2014;112(1):140–4.

    Article  Google Scholar 

  • Bernier J, Hall E, Giaccia A. Radiation oncology: a century of achievements. Nat Rev Cancer. 2004;4:737–47.

    Article  CAS  Google Scholar 

  • Branch SS. SEER*stat database: incidence – SEER 18 regs research data + Hurricane Katrina impacted Louisiana cases, Nov 2015 Sub (1973–2013 varying) – linked to county attributes – total U.S., 1969–2014 counties. Bethesda, MD: Surveillance Research Program, National Cancer Institute; 2016.

    Google Scholar 

  • Chen Y, Liu X, Zheng D, Xu L, Hong L, Xu Y, et al. Diffusion-weighted magnetic resonance imaging for early response assessment of chemoradiotherapy in patients with nasopharyngeal carcinoma. Magn Reson Imaging. 2014;32(6):630–7.

    Article  CAS  Google Scholar 

  • Cooper RA, Carrington BM, Loncaster JA, Todd SM, Davidson SE, Logue JP, et al. Tumour oxygenation levels correlate with dynamic contrast-enhanced magnetic resonance imaging parameters in carcinoma of the cervix. Radiother Oncol. 2000;57(1):53–9.

    Article  CAS  Google Scholar 

  • Corbin KS, Hellman S, Weichselbaum RR. Extracranial oligometastases: a subset of metastases curable with stereotactic radiotherapy. J Clin Oncol. 2013;31(11):1384–90.

    Article  CAS  Google Scholar 

  • Delaney G, Jacob S, Featherstone C, Barton M. The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer. 2005;104(6):1129–37.

    Article  Google Scholar 

  • van der Paardt MP, Zagers MB, Beets-Tan RGH, Stoker J, Bipat S. Patients who undergo preoperative chemoradiotherapy for locally advanced rectal cancer restaged by using diagnostic MR imaging: a systematic review and meta-analysis. Radiology. 2013;269(1):101–12.

    Article  Google Scholar 

  • DeVries AF, Kremser C, Hein PA, Griebel J, Krezcy A, Öfner D, et al. Tumor microcirculation and diffusion predict therapy outcome for primary rectal carcinoma. Int J Radiat Oncol Biol Phys. 2003;56(4):958–65.

    Article  Google Scholar 

  • Dzik-Jurasz A, Domenig C, George M, Wolber J, Padhani A, Brown G, et al. Diffusion MRI for prediction of response of rectal cancer to chemoradiation. Lancet. 2002;360(9329):307–8.

    Article  Google Scholar 

  • Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, et al. GLOBOCAN 2012 v1. 0, cancer incidence and mortality worldwide: IARC CancerBase no. 11. Lyon: International Agency for Research on Cancer; 2013.. http://globocaniarcfr

    Google Scholar 

  • Fernandez FG, Drebin JA, Linehan DC, Dehdashti F, Siegel BA, Strasberg SM. Five-year survival after resection of hepatic metastases from colorectal cancer in patients screened by positron emission tomography with F-18 fluorodeoxyglucose (FDG-PET). Ann Surg. 2004;240(3):438.

    Article  Google Scholar 

  • Forghani R, Yu E, Levental M, Som PM, Curtin HD. Imaging evaluation of lymphadenopathy and patterns of lymph node spread in head and neck cancer. Expert Rev Anticancer Ther. 2015;15(2):207–24.

    Article  CAS  Google Scholar 

  • George M, Dzik-Jurasz A, Padhani A, Brown G, Tait D, Eccles S, et al. Non-invasive methods of assessing angiogenesis and their value in predicting response to treatment in colorectal cancer. Br J Surg. 2001;88(12):1628–36.

    Article  CAS  Google Scholar 

  • Gibbs P, Liney GP, Pickles MD, Zelhof B, Rodrigues G, Turnbull LW. Correlation of ADC and T2 measurements with cell density in prostate cancer at 3.0 Tesla. Investig Radiol. 2009;44(9):572–6.

    Article  Google Scholar 

  • Griffin JL, Shockcor JP. Metabolic profiles of cancer cells. Nat Rev Cancer. 2004;4(7):551–61.

    Article  CAS  Google Scholar 

  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  Google Scholar 

  • Hanna TP, Shafiq J, Delaney GP, Vinod SK, Thompson SR, Barton MB. The population benefit of evidence-based radiotherapy: 5-year local control and overall survival benefits. Radiother Oncol. 2018;126(2):191–7.

    Article  CAS  Google Scholar 

  • Hellman S, Weichselbaum RR. Oligometastases. J Clin Oncol. 1995;13(1):8–10.

    Article  CAS  Google Scholar 

  • Higano S, Yun X, Kumabe T, Watanabe M, Mugikura S, Umetsu A, et al. Malignant astrocytic tumors: clinical importance of apparent diffusion coefficient in prediction of grade and prognosis. Radiology. 2006;241(3):839–46.

    Article  Google Scholar 

  • Intven M, Reerink O, Philippens ME. Dynamic contrast enhanced MR imaging for rectal cancer response assessment after neo-adjuvant chemoradiation. J Magn Reson Imaging. 2015;41(6):1646–53.

    Article  Google Scholar 

  • Just N. Improving tumour heterogeneity MRI assessment with histograms. Br J Cancer. 2014;111(12):2205–13.

    Article  CAS  Google Scholar 

  • Khoo V, Hawkins M, McDonald F, Ahmed M, Kirby A, Van As N, et al. CORE: a randomised trial of COventional care versus radioablation (stereotactic body radiotherapy) for extracranial oligometastases. Lung Cancer. 2018;115:S85–S6.

    Article  Google Scholar 

  • Kim MJ, Lee SJ, Lee JH, Kim SH, Chun HK, Kim SH, et al. Detection of rectal cancer and response to concurrent chemoradiotherapy by proton magnetic resonance spectroscopy. Magn Reson Imaging. 2012;30(6):848–53.

    Article  Google Scholar 

  • Kwock L, Smith JK, Castillo M, Ewend MG, Collichio F, Morris DE, et al. Clinical role of proton magnetic resonance spectroscopy in oncology: brain, breast, and prostate cancer. Lancet Oncol. 2006;7(10):859–68.

    Article  Google Scholar 

  • Lambrecht M, Vandecaveye V, De Keyzer F, Roels S, Penninckx F, Van Cutsem E, et al. Value of diffusion-weighted magnetic resonance imaging for prediction and early assessment of response to neoadjuvant radiochemotherapy in rectal cancer: preliminary results. Int J Radiat Oncol Biol Phys. 2012;82(2):863–70.

    Article  Google Scholar 

  • Lo SS, Fakiris AJ, Teh BS, Cardenes HR, Henderson MA, Forquer JA, et al. Stereotactic body radiation therapy for oligometastases. Expert Rev Anticancer Ther. 2009;9(5):621–35.

    Article  Google Scholar 

  • Lo SS, Fakiris AJ, Chang EL, Mayr NA, Wang JZ, Papiez L, et al. Stereotactic body radiation therapy: a novel treatment modality. Nat Rev Clin Oncol. 2010a;7(1):44.

    Article  Google Scholar 

  • Lo SS, Teh BS, Mayr NA, Olencki TE, Wang JZ, Grecula JC, et al. Stereotactic body radiation therapy for oligometastases. Discov Med. 2010b;10(52):247–54.

    PubMed  Google Scholar 

  • Loncaster JA, Carrington BM, Sykes JR, Jones AP, Todd SM, Cooper R, et al. Prediction of radiotherapy outcome using dynamic contrast enhanced MRI of carcinoma of the cervix. Int J Radiat Oncol Biol Phys. 2002;54(3):759–67.

    Article  Google Scholar 

  • de Lussanet QG, Backes WH, Griffioen AW, Padhani AR, Baeten CI, van Baardwijk A, et al. Dynamic contrast-enhanced magnetic resonance imaging of radiation therapy-induced microcirculation changes in rectal cancer. Int J Radiat Oncol Biol Phys. 2005;63(5):1309–15.

    Article  Google Scholar 

  • Metcalfe P, Liney G, Holloway L, Walker A, Barton M, Delaney G, et al. The potential for an enhanced role for MRI in radiation-therapy treatment planning. Technol Cancer Res Treat. 2013;12(5):429–46.

    Article  CAS  Google Scholar 

  • Moffat BA, Chenevert TL, Lawrence TS, Meyer CR, Johnson TD, Dong Q, et al. Functional diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain tumor response. Proc Natl Acad Sci U S A. 2005;102(15):5524–9.

    Article  CAS  Google Scholar 

  • Moran JM, Elshaikh MA, Lawrence TS. Radiotherapy: what can be achieved by technical improvements in dose delivery? Lancet Oncol. 2005;6(1):51–8.

    Article  Google Scholar 

  • Pastorino U, Buyse M, Friedel G, Ginsberg RJ, Girard P, Goldstraw P, et al. Long-term results of lung metastasectomy: prognostic analyses based on 5206 cases. J Thorac Cardiovasc Surg. 1997;113(1):37–49.

    Article  CAS  Google Scholar 

  • Pham TT, Liney GP, Wong K, Barton MB. Functional MRI for quantitative treatment response prediction in locally advanced rectal cancer. Br J Radiol. 2017a;90(1072):20151078.

    Article  Google Scholar 

  • Pham TT, Liney G, Wong K, Rai R, Lee M, Moses D, et al. Study protocol: multi-parametric magnetic resonance imaging for therapeutic response prediction in rectal cancer. BMC Cancer. 2017b;17(1):465.

    Article  Google Scholar 

  • Salama JK, Hasselle MD, Chmura SJ, Malik R, Mehta N, Yenice KM, et al. Stereotactic body radiotherapy for multisite extracranial oligometastases. Cancer. 2012;118(11):2962–70.

    Article  Google Scholar 

  • Schulz R, Kagan AR. More precisely defined dose distributions are unlikely to affect cancer mortality. Med Phys. 2003;30(2):276.

    Article  CAS  Google Scholar 

  • Sugahara T, Korogi Y, Kochi M, Ikushima I, Shigematu Y, Hirai T, et al. Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging. 1999;9(1):53–60.

    Article  CAS  Google Scholar 

  • Tree AC, Khoo VS, Eeles RA, Ahmed M, Dearnaley DP, Hawkins MA, et al. Stereotactic body radiotherapy for oligometastases. Lancet Oncol. 2013;14(1):e28–37.

    Article  Google Scholar 

  • Vaupel P. Tumor microenvironmental physiology and its implications for radiation oncology. Semin Radiat Oncol. 2004;14(3):198–206.

    Article  Google Scholar 

  • Wong K, Delaney GP, Barton MB. Evidence-based optimal number of radiotherapy fractions for cancer: a useful tool to estimate radiotherapy demand. Radiother Oncol. 2016;119(1):145–9.

    Article  Google Scholar 

  • World Bank Country and Lending Groups [Internet]. The World Bank. 2018. https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups. Accessed 5 Apr 2018.

  • Yap ML, Zubizarreta E, Bray F, Ferlay J, Barton M. Global access to radiotherapy services: have we made progress during the past decade? J Glob Oncol. 2016;207:JGO001545.

    Google Scholar 

  • Zahra MA, Hollingsworth KG, Sala E, Lomas DJ, Tan LT. Dynamic contrast-enhanced MRI as a predictor of tumour response to radiotherapy. Lancet Oncol. 2007;8(1):63–74.

    Article  Google Scholar 

  • Zhang XM, Yu D, Zhang HL, Dai Y, Bi D, Liu Z, et al. 3D dynamic contrast-enhanced MRI of rectal carcinoma at 3T: correlation with microvascular density and vascular endothelial growth factor markers of tumor angiogenesis. J Magn Reson Imaging. 2008;27(6):1309–16.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael B. Barton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barton, M.B., Pham, T., Harris, G. (2019). Will We Still Need Radiotherapy in 20 Years?. In: Liney, G., van der Heide, U. (eds) MRI for Radiotherapy. Springer, Cham. https://doi.org/10.1007/978-3-030-14442-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14442-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14441-8

  • Online ISBN: 978-3-030-14442-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics