Skip to main content

Modelling Overflow Systems with Queuing in Primary Resources

  • Conference paper
  • First Online:
Quality, Reliability, Security and Robustness in Heterogeneous Systems (Qshine 2018)

Abstract

This article proposes a new method to determine the characteristics of multiservice overflow systems with queueing systems. A number of methods have been developed that have the advantage of determining the parameters of traffic directed to secondary resources as well as providing a way to model these resources. The accompanying assumption is that queues with limited capacities are used in primary resources. The results of analytical calculations are compared with the results of simulation experiments for a number of selected structures of overflow systems with queueing in primary resources. The results of the study confirm high accuracy of the proposed method and, in consequence, the accuracy of the theoretical assumptions adopted for the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 60.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bonald, T., Massoulié, L., Proutière, A., Virtamo, J.: A queueing analysis of max-min fairness, proportional fairness and balanced fairness. Queueing Syst. 53(1), 65–84 (2006). https://doi.org/10.1007/s11134-006-7587-7

    Article  MathSciNet  MATH  Google Scholar 

  2. Bonald, T., Roberts, J.W.: Internet and the Erlang formula. ACM SIGCOMM Comput. Commun. Rev. 42(1), 23–30 (2012). https://doi.org/10.1145/2096149.2096153

    Article  Google Scholar 

  3. Brune, G.: On delay and loss in a switching system for voice and data with internal overflow. In: Proceedings of 11th International Teletraffic Congress, pp. 2.1–2.7. North-Holland, Kyoto (1985)

    Google Scholar 

  4. Delbrouck, L.: On the steady-state distribution in a service facility carrying mixtures of traffic with different peakedness factors and capacity requirements. IEEE Trans. Commun. 31(11), 1209–1211 (1983)

    Article  Google Scholar 

  5. Fredericks, A.: Congestion in blocking systems - a simple approximation technique. Bell Syst. Tech. J. 59(6), 805–827 (1980)

    Article  Google Scholar 

  6. Glabowski, M., Kaliszan, A., Stasiak, M.: Modelling overflow systems with distributed secondary resources. Comput. Netw. 108, 171–183 (2016). https://doi.org/10.1016/j.comnet.2016.08.015

    Article  Google Scholar 

  7. Glabowski, M., Kubasik, K., Stasiak, M.: Modeling of systems with overflow multi-rate traffic. Telecommun. Syst. 37(1–3), 85–96 (2008). https://doi.org/10.1007/s11235-008-9070-8

    Article  Google Scholar 

  8. Głąbowski, M., Stasiak, M.: Multi-rate model of the group of separated transmission links of various capacities. In: de Souza, J.N., Dini, P., Lorenz, P. (eds.) ICT 2004. LNCS, vol. 3124, pp. 1101–1106. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27824-5_143

    Chapter  Google Scholar 

  9. Haddad, J.P., Mazumdar, R.R.: Congestion in large balanced multirate networks. Queueing Syst. 74(2), 333–368 (2013). https://doi.org/10.1007/s11134-012-9322-x

    Article  MathSciNet  MATH  Google Scholar 

  10. Hanczewski, S., Stasiak, M., Weissenberg, J.: A queueing model of a multi-service system with state-dependent distribution of resources for each class of calls. IEICE Trans. Commun. E97–B(8), 1592–1605 (2014)

    Article  Google Scholar 

  11. Heffes, H.: Analysis of first-come first-served queuing systems with peaked inputs. Bell Syst. Tech. J. 52(7), 1215–1228 (1973). https://doi.org/10.1002/j.1538-7305.1973.tb02014.x

    Article  MathSciNet  Google Scholar 

  12. Huang, Q., Ko, K.T., Iversen, V.B.: Approximation of loss calculation for hierarchical networks with multiservice overflows. IEEE Trans. Commun. 56(3), 466–473 (2008)

    Article  Google Scholar 

  13. Iversen, V.: Teletraffic engineering handbook. Technical report, Technical University of Denmark, Lyngby (2010)

    Google Scholar 

  14. Kaufman, J.S., Rege, K.M.: Blocking in a shared resource environment with batched Poisson arrival processes. J. Perform. Eval. 24(4), 249–263 (1996). https://doi.org/10.1016/0166-5316(94)00029-8

    Article  MATH  Google Scholar 

  15. Kaufman, L., Seery, J.B., Morrison, J.A.: Overflow models for dimension PBX feature packages. Bell Syst. Tech. J. 60(5), 661–676 (1981). https://doi.org/10.1002/j.1538-7305.1981.tb00255.x

    Article  Google Scholar 

  16. Kuczura, A.: The interrupted Poisson process as an overflow process. Bell Syst. Tech. J. 52(3), 437–448 (1973). https://doi.org/10.1002/j.1538-7305.1973.tb01971.x

    Article  MathSciNet  MATH  Google Scholar 

  17. Lagrange, X., Godlewski, P.: Performance of a hierarchical cellular network with mobility-dependent hand-over strategies. In: Proceedings of Vehicular Technology Conference - VTC, pp. 1868–1872. IEEE, Atlanta, April 1996. https://doi.org/10.1109/VETEC.1996.504082

  18. Matsumoto, J., Watanabe, Y.: Individual traffic characteristics queueing systems with multiple poisson and overflow inputs. IEEE Trans. Commun. 33(1), 1–9 (1985). https://doi.org/10.1109/TCOM.1985.1096202

    Article  MathSciNet  MATH  Google Scholar 

  19. Meier-Hellstern, K.S.: Parcel overflows in queues with multiple inputs. In: Proceedings of 12th International Teletraffic Congress, pp. 3.1–3.8. North-Holland, Torino (1988)

    Google Scholar 

  20. Morrison, J.A.: Analysis of some overflow problems with queuing. Bell Syst. Tech. J. 59(8), 1427–1462 (1980). https://doi.org/10.1002/j.1538-7305.1980.tb03373.x

    Article  MathSciNet  MATH  Google Scholar 

  21. Rácz, S., Gerő, B.P., Fodor, G.: Flow level performance analysis of a multi-service system supporting elastic and adaptive services. Perform. Eval. 49(1–4), 451–469 (2002). https://doi.org/10.1016/S0166-5316(02)00115-3

    Article  MATH  Google Scholar 

  22. Stamatelos, G.M., Koukoulidis, V.N.: Reservation-based bandwidth allocation in a radio ATM network. IEEE/ACM Trans. Netw. 5(3), 420–428 (1997). https://doi.org/10.1109/90.611106

    Article  Google Scholar 

  23. Stasiak, M.: Queuing systems for the internet. IEICE Trans. Commun. E99–B(6), 1224–1242 (2016)

    Google Scholar 

  24. Stasiak, M., Glabowski, M., Wiśniewski, A., Zwierzykowski, P.: Modeling and Dimensioning of Mobile Networks. Wiley, Hoboken (2011)

    Google Scholar 

  25. Wang, M., Li, S., Wong, E., Zukerman, M.: Performance analysis of circuit switched multi-service multi-rate networks with alternative routing. J. Lightwave Technol. 32(2), 179–200 (2014). https://doi.org/10.1109/JLT.2013.2289925

    Article  Google Scholar 

  26. Wilkinson, R.I.: Theories of toll traffic engineering in the USA. Bell Syst. Tech. J. 40, 421–514 (1956)

    Article  Google Scholar 

Download references

Acknowledgements

This paper was developed as a result of the research project 2016/23/B/ST7/03925 entitled “Modelling and service quality evaluation of Internet-based services” funded by the National Science Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz Głąbowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Głąbowski, M., Kmiecik, D., Stasiak, M. (2019). Modelling Overflow Systems with Queuing in Primary Resources. In: Duong, T., Vo, NS., Phan, V. (eds) Quality, Reliability, Security and Robustness in Heterogeneous Systems. Qshine 2018. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 272. Springer, Cham. https://doi.org/10.1007/978-3-030-14413-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14413-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14412-8

  • Online ISBN: 978-3-030-14413-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics