Skip to main content

QoS Criteria for Energy-Aware Switching Networks

  • Conference paper
  • First Online:
Quality, Reliability, Security and Robustness in Heterogeneous Systems (Qshine 2018)

Abstract

This article proposes a method to determine the QoS parameters for energy-aware multiservice switching networks. The initial assumption is that a decrease in the power uptake by the network can be achieved by a temporary switch-off of a certain number of switches. To this end, the article develops methods for a determination of the blocking probability in switching networks with a variable number of switches. The results of the analytical calculations are then compared with the results of simulation experiments for a selected number of structures of switching networks. The study reveals the good accuracy of the proposed model. The results obtained in the study can be applied in constructing energy-aware switching networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 60.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Binida, N., Wend, W.: Die effektive erreichbarkeit für abnehmerbundel hinter zwischenleitungsanungen. Nachrichtentechnische Zeitung (NTZ) 11(12), 579–585 (1959)

    Google Scholar 

  2. Chabarek, J., Sommers, J., Barford, P., Estan, C., Tsiang, D., Wright, S.: Power awareness in network design and routing. In: IEEE INFOCOM 2008 - the 27th Conference on Computer Communications, April 2008. https://doi.org/10.1109/INFOCOM.2008.93

  3. Charkiewicz, A.: An approximate method for calculating the number of junctions in a crossbar system exchange. Elektrosvyaz 2, 55–63 (1959)

    Google Scholar 

  4. Clos, C.: A study of non-blocking switching networks. Bell Syst. Tech. J. 32, 406–424 (1953)

    Article  Google Scholar 

  5. Cordeschi, N., Shojafar, M., Baccarelli, E.: Energy-saving self-configuring networked data centers. Comput. Netw. 57(17), 3479–3491 (2013). https://doi.org/10.1016/j.comnet.2013.08.002

    Article  Google Scholar 

  6. Ershova, E., Ershov, V.: Digital Systems for Information Distribution. Radio and Communications, Moscow (1983). (in Russian)

    Google Scholar 

  7. Głąbowski, M., Sobieraj, M.: Analytical modelling of multiservice switching networks with multiservice sources and resource management mechanisms. Telecommun. Syst. 66(3), 559–578 (2017). https://doi.org/10.1007/s11235-017-0305-4

    Article  Google Scholar 

  8. Głąbowski, M.: Recurrent method for blocking probability calculation in multi-service switching networks with BPP traffic. In: Thomas, N., Juiz, C. (eds.) EPEW 2008. LNCS, vol. 5261, pp. 152–167. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87412-6_12

    Chapter  Google Scholar 

  9. Głąbowski, M., Stasiak, M.: Point-to-point blocking probability in switching networks with reservation. Ann. Telecommun. 57(7–8), 798–831 (2002)

    Google Scholar 

  10. Głąbowski, M., Stasiak, M.D.: Modelling of multiservice switching networks with overflow links for any traffic class. IET Circuits Devices Syst. 8(5), 358–366 (2014). https://doi.org/10.1049/iet-cds.2013.0430

    Article  Google Scholar 

  11. Głąbowski, M., Stasiak, M.D.: Multiservice switching networks with overflow links and resource reservation. Math. Prob. Eng. 2016, 17 (2016). https://doi.org/10.1155/2016/4090656. Article ID 4090656

    Article  MathSciNet  MATH  Google Scholar 

  12. Gyarmati, L., Trinh, T.A.: How can architecture help to reduce energy consumption in data center networking? In: Proceedings of 1st International Conference on Energy-Efficient Computing and Networking, e-Energy 2010, pp. 183–186. ACM, New York (2010). https://doi.org/10.1145/1791314.1791343

  13. Hanczewski, S., Sobieraj, M., Stasiak, M.D.: The direct method of effective availability for switching networks with multi-service traffic. IEICE Trans. Commun. E99–B(6), 1291–1301 (2016)

    Article  Google Scholar 

  14. Kaufman, J.: Blocking in a shared resource environment. IEEE Trans. Commun. 29(10), 1474–1481 (1981)

    Article  Google Scholar 

  15. Kühn, P.J.: Systematic classification of self-adapting algorithms for power-saving operation modes of ICT systems. In: Proceedings of 2nd International Conference on Energy-Efficient Computing and Networking, pp. 51–54. ACM, New York (2011). https://doi.org/10.1145/2318716.2318724

  16. Lee, C.: Analysis of switching networks. Bell Syst. Tech. J. 34(6), 1287–1315 (1955)

    Article  MathSciNet  Google Scholar 

  17. Lotze, A., Roder, A., Thierer, G.: PCM-charts. Technical report, Institute of switching and data technics, University of Stuttgard (1979)

    Google Scholar 

  18. Niewiadomska-Szynkiewicz, E., Sikora, A., Arabas, P., Kamola, M., Mincer, M., Kołodziej, J.: Dynamic power management in energy-aware computer networks and data intensive computing systems. Future Gener. Comput. Syst. 37, 284–296 (2014). https://doi.org/10.1016/j.future.2013.10.002

    Article  Google Scholar 

  19. Pras, A., Nieuwenhuis, L., van de Meent, R., Mandjes, M.: Dimensioning network links: a new look at equivalent bandwidth. IEEE Netw. 23(2), 5–10 (2009). https://doi.org/10.1109/MNET.2009.4804330

    Article  Google Scholar 

  20. Roberts, J.: A service system with heterogeneous user requirements - application to multi-service telecommunications systems. In: Pujolle, G. (ed.) Proceedings of Performance of Data Communications Systems and their Applications, pp. 423–431. North Holland, Amsterdam (1981)

    Google Scholar 

  21. Roberts, J. (ed.): Performance evaluation and design of multiservice networks. Final Report COST 224. Commission of the European Communities, Brussels (1992)

    Google Scholar 

  22. Stasiak, M.: Blocking probability in a limited-availability group carrying mixture of different multichannel traffic streams. Ann. Télécommun. 48(1–2), 71–76 (1993)

    Google Scholar 

  23. Stasiak, M.: Combinatorial considerations for switching systems carrying multi-channel traffic streams. Ann. Télécommun. 51(11–12), 611–625 (1996)

    Google Scholar 

  24. Stasiak, M., Zwierzykowski, P.: Point-to-group blocking in the switching networks with unicast and multicast switching. Perform. Eval. 48(1–4), 249–267 (2002)

    MATH  Google Scholar 

  25. Stasiak, M.: Blocage interne point a point dans les reseaux de connexion. Ann. Télécommun. 43(9–10), 561–575 (1988)

    Google Scholar 

  26. Stasiak, M., Głąbowski, M.: Multi-service switching networks with point-to-group selection and several attempts of setting up a connection. In: Kouvatsos, D. (ed.) Performance Modelling and Analysis for Heterogeneous Networks, pp. 3–26. River Publishers, Aalborg (2009)

    Google Scholar 

  27. Tucker, R.S., Parthiban, R., Baliga, J., Hinton, K., Ayre, R.W.A., Sorin, W.: Evolution of WDM optical IP networks: a cost and energy perspective. J. Lightwave Technol. 27(3), 243–252 (2009). http://jlt.osa.org/abstract.cfm?URI=jlt-27-3-243

  28. Vasić, N., Kostić, D.: Energy-aware traffic engineering. In: Proceedings of 1st International Conference on Energy-Efficient Computing and Networking, e-Energy 2010, pp. 169–178. ACM, New York (2010). https://doi.org/10.1145/1791314.1791341

  29. Venkatachalam, V., Franz, M.: Power reduction techniques for microprocessor systems. ACM Comput. Surv. 37(3), 195–237 (2005). https://doi.org/10.1145/1108956.1108957

    Article  Google Scholar 

  30. Żal, M., Wojtysiak, P.: An energy-efficient control algorithms for switching fabrics. In: 2014 16th International Telecommunications Network Strategy and Planning Symposium (Networks), pp. 1–5, September 2014. https://doi.org/10.1109/NETWKS.2014.6959228

Download references

Acknowledgements

This paper was developed as a result of the research project 2016/23/B/ST7/03925 entitled “Modelling and service quality evaluation of Internet-based services” funded by the National Science Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz Głąbowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Głąbowski, M., Stasiak, M., Stasiak, M.D. (2019). QoS Criteria for Energy-Aware Switching Networks. In: Duong, T., Vo, NS., Phan, V. (eds) Quality, Reliability, Security and Robustness in Heterogeneous Systems. Qshine 2018. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 272. Springer, Cham. https://doi.org/10.1007/978-3-030-14413-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14413-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14412-8

  • Online ISBN: 978-3-030-14413-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics