Skip to main content

Multilayered Heterogeneity of Glioblastoma Stem Cells: Biological and Clinical Significance

  • Chapter
  • First Online:
Stem Cells Heterogeneity in Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1139))

Abstract

Glioblastoma is a primary tumor of the brain with a poor prognosis. Pathological examination shows that this disease is characterized by intra-tumor morphological heterogeneity, while numerous and ongoing genomic analysis reveals multiple layers of heterogeneity. Intra-tumor and patient-to-patient heterogeneity is underpinned by cellular, genetic, and molecular heterogeneity, which is thought to be key determinants of time to tumor recurrence and resistance to therapy. The key cell type believed to contribute to the establishment and ongoing evolution of tumor heterogeneity is a glioma stem cell (GSC) subpopulation. In this chapter, we review, highlight, and discuss controversies and clinical relevance of glioblastoma heterogeneity and its cellular basis. Characterization of how cancer stem cells (CSCs) behave is important in understanding how tumors are initiated and how they recur following initial treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Hajj M et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100:3983–3988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anido J et al (2010) TGF-beta receptor inhibitors target the CD44(high)/Id1(high) glioma-initiating cell population in human glioblastoma. Cancer Cell 18:655–668

    Article  CAS  PubMed  Google Scholar 

  • Aruffo A et al (1990) CD44 is the principal cell surface receptor for hyaluronate. Cell 61:1303–1313

    Article  CAS  PubMed  Google Scholar 

  • Athanassiou-Papaefthymiou M et al (2014) Evaluation of CD44 variant expression in oral, head and neck squamous cell carcinomas using a triple approach and its clinical significance. Int J Immunopathol Pharmacol 27:337–349

    Article  CAS  PubMed  Google Scholar 

  • Baeuerle PA, Henkel T (1994) Function and activation of NF-kappa B in the immune system. Annu Rev Immunol 12:141–179

    Article  CAS  PubMed  Google Scholar 

  • Bayin NS et al (2017) Notch signaling regulates metabolic heterogeneity in glioblastoma stem cells. Oncotarget 8:64932–64953

    Article  PubMed  PubMed Central  Google Scholar 

  • Baysan M et al (2014) Micro-environment causes reversible changes in DNA methylation and mRNA expression profiles in patient-derived glioma stem cells. PLoS ONE 9:e94045

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beier D et al (2007) CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 67:4010–4015

    Article  CAS  PubMed  Google Scholar 

  • Bhat KPL et al (2013) Mesenchymal differentiation mediated by NF-kappaB promotes radiation resistance in glioblastoma. Cancer Cell 24:331–346

    Article  CAS  PubMed  Google Scholar 

  • Bittner M et al (2000) Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406:536–540

    Article  CAS  PubMed  Google Scholar 

  • Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737

    Article  CAS  PubMed  Google Scholar 

  • Branda CS, Dymecki SM (2004) Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev Cell 6:7–28

    Article  CAS  PubMed  Google Scholar 

  • Brat DJ, Van Meir EG (2004) Vaso-occlusive and prothrombotic mechanisms associated with tumor hypoxia, necrosis, and accelerated growth in glioblastoma. Lab Investig 84:397–405

    Article  CAS  PubMed  Google Scholar 

  • Brennan CW et al (2013) The somatic genomic landscape of glioblastoma. Cell 155:462–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown DV et al (2017) Expression of CD133 and CD44 in glioblastoma stem cells correlates with cell proliferation, phenotype stability and intra-tumor heterogeneity. PLoS One 12:e0172791

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burney MJ et al (2013) An epigenetic signature of developmental potential in neural stem cells and early neurons. Stem Cells 31:1868–1880

    Article  CAS  PubMed  Google Scholar 

  • Capela A, Temple S (2002) LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal. Neuron 35:865–875

    Article  PubMed  Google Scholar 

  • Caramel J et al (2013) A switch in the expression of embryonic EMT-inducers drivesthe development of malignant melanoma. Cancer Cell 24:466–480

    Article  CAS  PubMed  Google Scholar 

  • Chaffer CL et al (2011) Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. PNAS 108:7950–7955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaffer CL et al (2013) Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell 154:61–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chambers I et al (2007) Nanog safeguards pluripotency and mediates germline development. Nature 450:1230–1234

    Article  CAS  PubMed  Google Scholar 

  • Chen R et al (2010) A hierarchy of self-renewing tumor-initiating cell types in glioblastoma. Cancer Cell 17:362–375

    Article  CAS  PubMed  Google Scholar 

  • Choi SA et al (2014) Identification of brain tumour initiating cells using the stem cell marker aldehyde dehydrogenase. Eur J Cancer 50:137–149

    Article  CAS  PubMed  Google Scholar 

  • Chow LML et al (2011) Cooperativity within and among Pten, p53, and Rb pathways induces high-grade astrocytoma in adult brain. Cancer Cell 19:305–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung AS et al (2010) Targeting the tumour vasculature: insights from physiological angiogenesis. Nat Rev Cancer 10:505–514

    Article  CAS  PubMed  Google Scholar 

  • Clark SJ et al (2016) Single-cell epigenomics: powerful new methods for understanding gene regulation and cell identity. Genome Biol 17:72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daniel PM et al (2018) Intratumor MAPK and PI3K signaling pathway heterogeneity in glioblastoma tissue correlates with CREB signaling and distinct target gene signatures. Exp Mol Pathol 105:23–31

    Article  CAS  PubMed  Google Scholar 

  • Deppe U et al (1978) Cell lineages of the embryo of the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A 75:376–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donnenberg VS, Donnenberg AD (2015) Stem cell state and the epithelial-to-mesenchymal transition: implications for cancer therapy. J Clin Pharmacol 55:603–619

    Article  CAS  PubMed  Google Scholar 

  • Doucette T et al (2013) Immune heterogeneity of glioblastoma subtypes: extrapolation from the cancer genome atlas. Cancer Immunol Res 1:112–122

    Article  CAS  PubMed  Google Scholar 

  • Farago AF et al (2006) Assembly of the brainstem cochlear nuclear complex is revealed by intersectional and subtractive genetic fate maps. Neuron 50:205–218

    Article  CAS  PubMed  Google Scholar 

  • Frieda KL et al (2017) Synthetic recording and in situ readout of lineage information in single cells. Nature 541:107–111

    Article  CAS  PubMed  Google Scholar 

  • Friedmann-Morvinski D et al (2012) Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science 338:1080–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galli R et al (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021

    Article  CAS  PubMed  Google Scholar 

  • Gerlinger M et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366:883–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grivennikov SI et al (2010) Immunity, inflammation, and cancer. Cell 140:883–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Günthert U et al (1991) A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell 65:13–24

    Article  PubMed  Google Scholar 

  • Gupta PB et al (2011) Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146:633–644

    Article  CAS  PubMed  Google Scholar 

  • Habib N et al (2016) Div-Seq: single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons. Science 353:925–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haghverdi L et al (2016) Diffusion pseudotime robustly reconstructs lineage branching. Nat Methods 13:845–848

    Article  CAS  PubMed  Google Scholar 

  • Halliday J et al (2014) In vivo radiation response of proneural glioma characterized by protective p53 transcriptional program and proneural-mesenchymal shift. PNAS 111:5248–5253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K et al (2008) Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states. Cell Stem Cell 3:391–401

    Article  CAS  PubMed  Google Scholar 

  • Hoek KS et al (2008) In vivo switching of human melanoma cells between proliferative and invasive states. Cancer Res 68:650–656

    Article  CAS  PubMed  Google Scholar 

  • Holmberg Olausson K et al (2014) Prominin-1 (CD133) defines both stem and non-stem cell populations in CNS development and gliomas. PLoS ONE 9:e106694

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu X-L et al (2012) Epigenetic control on cell fate choice in neural stem cells. Protein Cell 3:278–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikawa M et al (1983) Isolation and characterization of aldehyde dehydrogenase isozymes from usual and atypical human livers. J Biol Chem 258:6282–6287

    Article  CAS  PubMed  Google Scholar 

  • Jijiwa M et al (2011) CD44v6 regulates growth of brain tumor stem cells partially through the AKT-mediated pathway. PLoS ONE 6:e24217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung CS et al (2011) Diagnostic markers for glioblastoma. Histol Histopathol 26:1327–1341

    CAS  PubMed  Google Scholar 

  • Kalhor R et al (2017) Rapidly evolving homing CRISPR barcodes. Nat Methods 14:195–200

    Article  CAS  PubMed  Google Scholar 

  • Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401

    Article  CAS  PubMed  Google Scholar 

  • Kelly PN et al (2007) Tumor growth need not be driven by rare cancer stem cells. Science 317:337

    Article  CAS  PubMed  Google Scholar 

  • Kern SE, Shibata D (2007) The fuzzy math of solid tumor stem cells: a perspective. Cancer Res 67:8985–8988

    Article  CAS  PubMed  Google Scholar 

  • Kim K-J et al (2011) The presence of stem cell marker-expressing cells is not prognostically significant in glioblastomas. Neuropathology 31:494–502

    Article  PubMed  Google Scholar 

  • Kim H et al (2015) Whole-genome and multisector exome sequencing of primary and post-treatment glioblastoma reveals patterns of tumor evolution. Genome Res 25:316–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkpatrick JP et al (2017) Management of GBM: a problem of local recurrence. J Neuro-Oncol 134:487–493

    Article  Google Scholar 

  • Kolodziejczyk AA et al (2015) The technology and biology of single-cell RNA sequencing. Mol Cell 58:610–620

    Article  CAS  PubMed  Google Scholar 

  • Lee JH et al (2018) Human glioblastoma arises from subventricular zone cells with low-level driver mutations. Nature 560(7717):243–247

    Article  CAS  PubMed  Google Scholar 

  • Lein E et al (2017) The promise of spatial transcriptomics for neuroscience in the era of molecular cell typing. Science 358:64–69

    Article  CAS  PubMed  Google Scholar 

  • Li FZ et al (2015) Phenotype switching in melanoma: implications for progression and therapy. Front Oncol 5:31

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu C et al (2011) Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell 146:209–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macaulay IC et al (2017) Single-cell multiomics: multiple measurements from single cells. Trends Genet 33:155–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magee JA et al (2012) Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell 21:283–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao P et al (2013) Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3. PNAS 110:8644–8649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Martel C et al (2012) Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol 13:607–615

    Article  PubMed  Google Scholar 

  • Marusyk A et al (2012) Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer 12:323–334

    Article  CAS  PubMed  Google Scholar 

  • Marzesco A-M et al (2005) Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells. J Cell Sci 118:2849–2858

    Article  CAS  PubMed  Google Scholar 

  • McGranahan N, Swanton C (2012) Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. Cancer Cell 13:528–538

    CAS  Google Scholar 

  • McKenna A et al (2016) Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science 353:aaf7907

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meng J et al (2014) A radiosensitivity gene signature in predicting glioma prognostic via EMT pathway. Oncotarget 5:4683–4693

    Article  PubMed  PubMed Central  Google Scholar 

  • Metellus P et al (2011) Prognostic impact of CD133 mRNA expression in 48 glioblastoma patients treated with concomitant radiochemotherapy: a prospective patient cohort at a single institution. Ann Surg Oncol 18:2937–2945

    Article  PubMed  Google Scholar 

  • Meyer M et al (2015) Single cell-derived clonal analysis of human glioblastoma links functional and genomic heterogeneity. PNAS 112:851–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison SJ, Weissman IL (1994) The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1:661–673

    Article  CAS  PubMed  Google Scholar 

  • Morrison SJ et al (1997) Identification of a lineage of multipotent hematopoietic progenitors. Development 124:1929–1939

    Article  CAS  PubMed  Google Scholar 

  • Muller S et al (2017) Single-cell profiling of human gliomas reveals macrophage ontogeny as a basis for regional differences in macrophage activation in the tumor microenvironment. Genome Biol 18:234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muramatsu T (1984) Cell surface glycoproteins as markers in monitoring in vitro differentiation of embryonal carcinoma cells. Cell Differ 15:101–108

    Article  CAS  PubMed  Google Scholar 

  • Nathanson DA et al (2014) Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA. Science 343:72–76

    Article  CAS  PubMed  Google Scholar 

  • Navin NE (2015) The first five years of single-cell cancer genomics and beyond. Genome Res 25:1499–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navin N et al (2011) Tumour evolution inferred by single-cell sequencing. Nature 472:90–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen LV et al (2012) Cancer stem cells: an evolving concept. Nat Rev Cancer 12:133–143

    Article  CAS  PubMed  Google Scholar 

  • Papp B, Plath K (2013) Epigenetics of reprogramming to induced pluripotency. Cell 152:1324–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel AP et al (2014) Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344:1396–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pei W et al (2017) Polylox barcoding reveals haematopoietic stem cell fates realized in vivo. Nature 548:456–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Persano L et al (2011) The three-layer concentric model of glioblastoma: cancer stem cells, microenvironmental regulation, and therapeutic implications. Sci World J 11:1829–1841

    Article  Google Scholar 

  • Persano L et al (2012) BMP2 sensitizes glioblastoma stem-like cells to temozolomide by affecting HIF-1 alpha stability and MGMT expression. Cell Death Dis 3:e412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips HS et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9:157–173

    Article  CAS  PubMed  Google Scholar 

  • Pietras A et al (2014) Osteopontin-CD44 signaling in the glioma perivascular niche enhances cancer stem cell phenotypes and promotes aggressive tumor growth. Cell Stem Cell 14:357–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19:1423–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quintana E et al (2008) Efficient tumour formation by single human melanoma cells. Nature 456:593–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasper M et al (2010) Aldehyde dehydrogenase 1 positive glioblastoma cells show brain tumor stem cell capacity. Neuro-Oncology 12:1024–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rocco A et al (2012) CD133 and CD44 cell surface markers do not identify cancer stem cells in primary human gastric tumors. J Cell Physiol 227:2686–2693

    Article  CAS  PubMed  Google Scholar 

  • Rong Y et al (2006) ‘Pseudopalisading’ necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. J Neuropathol Exp Neurol 65:529–539

    Article  PubMed  Google Scholar 

  • Rooj AK et al (2017) MicroRNA-mediated dynamic bidirectional shift between the subclasses of glioblastoma stem-like cells. Cell Rep 19:2026–2032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothwell PM et al (2012) Effect of daily aspirin on risk of cancer metastasis: a study of incident cancers during randomised controlled trials. Lancet 379:1591–1601

    Article  CAS  PubMed  Google Scholar 

  • Ruiz P et al (1995) CD44 isoforms during differentiation and development. BioEssays 17:17–24

    Article  CAS  PubMed  Google Scholar 

  • Schäfer A et al (2012) Aldehyde dehydrogenase 1A1-a new mediator of resistance to temozolomide in glioblastoma. Neuro-Oncology 14:1452–1464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shackleton M et al (2009) Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 138:822–829

    Article  CAS  PubMed  Google Scholar 

  • Shmelkov SV et al (2008) CD133 expression is not restricted to stem cells, and both CD133+ and CD133− metastatic colon cancer cells initiate tumors. J Clin Invest 118:2111–2120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh SK et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828

    CAS  PubMed  Google Scholar 

  • Singh SK et al (2004) Cancer stem cells in nervous system tumors. Oncogene 23:7267–7273

    Article  CAS  PubMed  Google Scholar 

  • Sintupisut N et al (2013) An integrative characterization of recurrent molecular aberrations in glioblastoma genomes. Nucleic Acids Res 41:8803–8821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snippert HJ et al (2010) Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143:134–144

    Article  CAS  PubMed  Google Scholar 

  • Snuderl M et al (2011) Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma. Cancer Cell 20:810–817

    Article  CAS  PubMed  Google Scholar 

  • Snyder A et al (2014) Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371:2189–2199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Son MJ et al (2009) SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. Cell Stem Cell 4:440–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sottoriva A et al (2013) Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. PNAS 110:4009–4014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stieber D et al (2014) Glioblastomas are composed of genetically divergent clones with distinct tumourigenic potential and variable stem cell-associated phenotypes. Acta Neuropathol 127:203–219

    Article  CAS  PubMed  Google Scholar 

  • Stricker SH et al (2013) Widespread resetting of DNA methylation in glioblastoma-initiating cells suppresses malignant cellular behavior in a lineage-dependent manner. Genes Dev 27:654–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugimori M et al (2015) Discovery of power-law growth in the self-renewal of heterogeneous glioma stem cell populations. PLoS One 10:e0135760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Svensson V et al (2018) Exponential scaling of single-cell RNA-seq in the past decade. Nat Protoc 13:599–604

    Article  CAS  PubMed  Google Scholar 

  • Szerlip NJ et al (2012) Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response. PNAS 109:3041–3046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  • Teng J et al (2017) Dissecting inherent intratumor heterogeneity in patient-derived glioblastoma culture models. Neuro-Oncology 19:820–832

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thorne RF et al (2004) The role of the CD44 transmembrane and cytoplasmic domains in co-ordinating adhesive and signalling events. J Cell Sci 117:373–380

    Article  CAS  PubMed  Google Scholar 

  • Tirosh I et al (2016) Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature 539:309–313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Toole BP (2004) Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer 4:528–539

    Article  CAS  PubMed  Google Scholar 

  • Trapnell C et al (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32:381–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner DL, Cepko CL (1987) A common progenitor for neurons and glia persists in rat retina late in development. Nature 328:131–136

    Article  CAS  PubMed  Google Scholar 

  • Uchida N et al (2000) Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A 97:14720–14725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venet D et al (2011) Most random gene expression signatures are significantly associated with breast cancer outcome. PLoS Comput Biol 7:e1002240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verfaillie A et al (2015) Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state. Nat Commun 6:6683

    Article  CAS  PubMed  Google Scholar 

  • Verhaak RGW et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogt N et al (2004) Molecular structure of double-minute chromosomes bearing amplified copies of the epidermal growth factor receptor gene in gliomas. Proc Natl Acad Sci U S A 101:11368–11373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waldner MJ, Neurath MF (2009) Colitis-associated cancer: the role of T cells in tumor development. Semin Immunopathol 31:249–256

    Article  CAS  PubMed  Google Scholar 

  • Wang J et al (2008) CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. Int J Cancer 122:761–768

    Article  CAS  PubMed  Google Scholar 

  • Weigmann A et al (1997) Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc Natl Acad Sci U S A 94:12425–12430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welker AM et al (2017) Changes in tumor cell heterogeneity after chemotherapy treatment in a xenograft model of glioblastoma. Neuroscience 356:35–43

    Article  CAS  PubMed  Google Scholar 

  • Yin AH et al (1997) AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90:5002–5012

    Article  CAS  PubMed  Google Scholar 

  • Yu P et al (2010) Clinical significance of pAKT and CD44v6 overexpression with breast cancer. J Cancer Res Clin Oncol 136:1283–1292

    Article  CAS  PubMed  Google Scholar 

  • Zelová H, Hovsek J (2013) TNF-alpha signalling and inflammation: interactions between old acquaintances. Inflamm Res 62:641–651

    Article  PubMed  CAS  Google Scholar 

  • Zhao LH et al (2015) CD44v6 expression in patients with stage II or stage III sporadic colorectal cancer is superior to CD44 expression for predicting progression. Int J Clin Exp Pathol 8:692–701

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zöller M (2011) CD44: can a cancer-initiating cell profit from an abundantly expressed molecule? Nat Rev Cancer 11:254–267

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

TM is supported by grants from the Brain Foundation Australia and the CASS Foundation Australia.

Conflict of Interest

The authors have declared no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theo Mantamadiotis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brown, D.V., Stylli, S.S., Kaye, A.H., Mantamadiotis, T. (2019). Multilayered Heterogeneity of Glioblastoma Stem Cells: Biological and Clinical Significance. In: Birbrair, A. (eds) Stem Cells Heterogeneity in Cancer. Advances in Experimental Medicine and Biology, vol 1139. Springer, Cham. https://doi.org/10.1007/978-3-030-14366-4_1

Download citation

Publish with us

Policies and ethics