Skip to main content

A TP-LPV-LMI Approach to Control of Tumor Growth

  • Chapter
  • First Online:
Book cover Recent Advances in Intelligent Engineering

Part of the book series: Topics in Intelligent Engineering and Informatics ((TIEI,volume 14))

  • 321 Accesses

Abstract

By using advanced control techniques to control physiological systems sophisticated control regimes can be realized. There are several challenges need to be solved in these approaches, however. Most of the time, the lack of information of the internal dynamics, the nonlinear behavior of the system to be controlled and the variabilities coming from that simple fact that people are different and their specifics vary in time makes the control design difficult. Nevertheless, the use of appropriate methodologies can facilitate to find solutions to them. In this study, our aim is to introduce different techniques and by combining them we show an effective way for control design with respect to physiological systems. Our solution stands on four pillars: transformation of the formulated model into control oriented model (COM) form; use the COM for linear parameter varying (LPV) kind modeling to handle unfavorable dynamics as linear dependencies; tensor product modeling (TPM) to downsize the computational costs both from modeling and control design viewpoint; and finally, using linear matrix inequalities (LMI) based controller design to satisfy predefined requirements. The occurring TP-LPV-LMI controller is able to enforce a given, nonlinear system to behave as a selected reference system. In this study, the detailed control solution is applied for tumor growth control to maintain the volume of the tumor.

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 679681).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Xing, S. Lisong, Molecular targeted therapy of cancer: the progress and future prospect. Front. Lab. Med. 1(2), 69–75 (2017)

    Google Scholar 

  2. P. Charlton, J. Spicer, Targeted therapy in cancer. Medicine 44(1), 34–38 (2016)

    Google Scholar 

  3. N.S. Vasudev, A.R. Reynolds, Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions. Angiogenesis 17(3), 471–494 (2014)

    Google Scholar 

  4. A.M.E. Abdalla, L. Xiao, M.W. Ullah, M. Yu, C. Ouyang, G. Yang, Current challenges of cancer anti-angiogenic therapy and the promise of nanotherapeutics. Theranostics 8(2), 533–548 (2018)

    Google Scholar 

  5. Y. Kubota, Tumor angiogenesis and antiangiogenic therapy. Keio J. Med. 61, 47–56 (2012)

    Google Scholar 

  6. J. Sápi, Controller-managed automated therapy and tumor growth model identification in the case of antiangiogenic therapy for most effective, individualized treatment. Ph.D. Thesis, Óbuda University, Budapest, Hungary, 2015

    Google Scholar 

  7. C. Ionescu, R. De Keyser, J. Sabatier, A. Oustaloup, F. Levron, Low frequency constant-phase behavior in the respiratory impedance. Biomed. Signal Process. 6(2), 197–208 (2011)

    Google Scholar 

  8. D. Copot, R. De Keyser, J. Juchem, C.M. Ionescu, Fractional order impedance model to estimate glucose concentration: in vitro analysis. ACTA Polytech. Hung. 14(1), 207–220 (2017)

    Google Scholar 

  9. L. Kovács, A robust fixed point transformation-based approach for type 1 diabetes control. Nonlinear Dyn. 89(4), 2481–2493 (2017)

    MathSciNet  Google Scholar 

  10. C. Ionescu, A. Lopes, D. Copot, J.A.T. Machado, J.H.T. Bates, The role of fractional calculus in modeling biological phenomena: a review. Commun. Nonlinear Sci. 51, 141–159 (2017)

    MathSciNet  Google Scholar 

  11. A. Dineva, J.K. Tar, A. Várkonyi-Kóczy, V. Piuri, Adaptive controller using fixed point transformation for regulating propofol administration through wavelet-based anesthetic value, in 2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA) (IEEE, 2016), pp. 1–6

    Google Scholar 

  12. F.S. Lobato, V.S. Machado, V. Steffen, Determination of an optimal control strategy for drug administration in tumor treatment using multi-objective optimization differential evolution. Comput. Methods Programs Biomed. 131, 51–61 (2016)

    Google Scholar 

  13. D. Drexler, J. Sápi, L. Kovács, Potential benefits of discrete-time controller-based treatments over protocol-based cancer therapies. Acta Polytech. Hung. 14(1), 11–23 (2017)

    Google Scholar 

  14. J. Klamka, H. Maurer, A. Swierniak, Local controllability and optimal control for a model of combined anticancer therapy with control delays. Math. Biosci. Eng. 14(1), 195–216 (2017)

    MathSciNet  MATH  Google Scholar 

  15. D.A. Drexler, J. Sápi, L. Kovács, Modeling of tumor growth incorporating the effects of necrosis and the effect of bevacizumab. Complexity 2017, 1–10 (2017)

    MathSciNet  MATH  Google Scholar 

  16. D. Drexler, J. Sápi, L. Kovács, Positive nonlinear control of tumor growth using angiogenic inhibition. IFAC-PapersOnLine 50(1), 15068–15073 (2017). (20th IFAC World Congress)

    Google Scholar 

  17. J. Kuti, Generalization of tensor product model based control analysis and synthesis. Ph.D. Thesis, Applied Informatics and Applied Mathemathics Doctoral School, Óbuda University, Budapest, Hungary, 2018

    Google Scholar 

  18. P.H. Colmegna, R.S. Sanchez-Pena, R. Gondhalekar, E. Dassau, F.J. Doyle, Switched LPV glucose control in type 1 diabetes. IEEE Trans. Biomed. Eng. 63(6), 1192–1200 (2016)

    Google Scholar 

  19. L. Kovács, Linear parameter varying (LPV) based robust control of type-I diabetes driven for real patient data. Knowl-Based Syst. 122, 199–213 (2017)

    Google Scholar 

  20. S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, vol. 15 (Siam, 1994)

    Google Scholar 

  21. G. Herrmann, M.C. Turner, I. Postlethwaite, Linear matrix inequalities in control, in Mathematical Methods for Robust and Nonlinear Control (Springer, Berlin, 2007), pp. 123–142

    Google Scholar 

  22. P. Baranyi, Y. Yam, P. Varlaki, Tensor Product Model Transformation in Polytopic Model-Based Control, 1st edn. (CRC Press, USA, 2013)

    MATH  Google Scholar 

  23. A. Szollosi, P. Baranyi, Influence of the tensor product model representation of qLPV models on the feasibility of linear matrix inequality based stability analysis. Asian J. Control 20(1), 531–547 (2018)

    MathSciNet  MATH  Google Scholar 

  24. Gy. Eigner, L. Kovács, Linear matrix inequality based control of tumor growth, in 2017 IEEE International Conference on Systems, Man and Cybernetics, ed. by L. Deng (IEEE Systems, Man and Cybernetics Society, New York, 2017), pp. 1734–1739

    Google Scholar 

  25. M.S. Grewal, A.P. Andrews, Kalman Filtering: Theory and Practice Using MATLAB, 3rd edn. (Wiley, Chichester, 2008)

    MATH  Google Scholar 

  26. P. Hahnfeldt, D. Panigrahy, J. Folkman, L. Hlatky, Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy. Cancer Res. 59, 4770–4775 (1999)

    Google Scholar 

  27. J. Sápi, D.A. Drexler, L. Kovács, Potential benefits of discrete-time controller based treatments over protocol-based cancer therapies. Acta Polytech. Hung. 14(1), 11–23 (2017)

    Google Scholar 

  28. P. Baranyi, Extension of the Multi-TP Model Transformation to Functions with Different Numbers of Variables. Complexity 2018 (2018)

    Google Scholar 

  29. R. Tóth, Modeling and identification of linear parameter-varying systems, in Lecture Notes in Control and Information Sciences, vol. 403 (Springer, Berlin, 2010)

    Google Scholar 

  30. O. Sename, P. Gáspár, J. Bokor, Robust control and linear parameter varying approaches, application to vehicle dynamics, in Lecture Notes in Control and Information Sciences, vol. 437 (Springer, Berlin, 2013)

    Google Scholar 

  31. A.P. White, G. Zhu, J. Choi, Linear Parameter Varying Control for Engineering Applicaitons, 1st edn. (Springer, London, 2013)

    MATH  Google Scholar 

  32. C. Briat, Linear parameter-varying and time-delay systems. Analysis, Observation, Filtering & Control, 3 (2014)

    Google Scholar 

  33. G.B. Thomas, R.L. Finney, M.D. Weir, F.R. Giordano, Thomas’ calculus (Addison-Wesley Reading, Boston, 2003)

    Google Scholar 

  34. P. Baranyi, TP-model Transformation-based-control Design Frameworks (Springer, Berlin, 2016)

    MATH  Google Scholar 

  35. L-E. Hedrea, C-A. Bojan-Dragos, R-E. Precup, R-C. Roman, E.M. Petriu, C. Hedrea, Tensor product-based model transformation for position control of magnetic levitation systems, in 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE) (IEEE, 2017), pp. 1141–1146

    Google Scholar 

  36. L-E. Hedrea, C-A. Bojan-Dragos, R-E. Precup, T-A. Teban, Tensor product-based model transformation for level control of vertical three tank systems, in 2017 IEEE 21st International Conference on Intelligent Engineering Systems (INES) (IEEE, 2017), pp. 000113–000118

    Google Scholar 

  37. J. Kuti, P. Galambos, P. Baranyi, Minimal volume simplex (MVS) convex hull generation and manipulation methodology for TP model transformation. Asian J. Control 19(1), 289–301 (2017)

    MathSciNet  MATH  Google Scholar 

  38. P. Galambos, P. Baranyi, TP model transformation: a systematic modelling framework to handle internal time delays in control systems. Asian J. Control 17(2), 1–11 (2015)

    MathSciNet  MATH  Google Scholar 

  39. J. Kuti, P. Galambos, P. Baranyi, Control analysis and synthesis through polytopic tensor product model: a general concept. IFAC-PapersOnLine 50(1), 6558–6563 (2017)

    Google Scholar 

  40. S. Campos, V. Costa, L. Tôrres, R. Palhares, Revisiting the TP model transformation: interpolation and rule reduction. Asian J. Control 17(2), 392–401 (2015)

    MathSciNet  MATH  Google Scholar 

  41. Q. Weiwei, H. Bing, L. Gang, Z. Pengtao, Robust model predictive tracking control of hypersonic vehicles in the presence of actuator constraints and input delays. J. Frankl. Inst. 353(17), 4351–4367 (2016)

    MathSciNet  MATH  Google Scholar 

  42. X. Liu, X. Xin, Z. Li, Z. Chen, Near optimal control based on the Tensor-product technique. IEEE Trans. Circuits II 64(5), 560–564 (2017)

    Google Scholar 

  43. X. Liu, Y. Yu, Z. Li, H. Iu, Polytopic H\(_\infty \) filter design and relaxation for nonlinear systems via tensor product technique. Signal Process. 127, 191–205 (2016)

    Google Scholar 

  44. X. Liu, Y. Yu, Z. Li, H. Iu, T. Fernando, A novel constant gain Kalman filter design for nonlinear systems. Signal Process. 135, 158–167 (2017)

    Google Scholar 

  45. P.S. Saikrishna, R. Pasumarthy, N.P. Bhatt, Identification and multivariable gain-scheduling control for cloud computing systems. IEEE Trans. Control Syst. Technol. 25(3), 792–807 (2017)

    Google Scholar 

  46. Gy. Eigner, I. Böjthe, P. Pausits, L. Kovács. Investigation of the TP modeling possibilities of the Hovorka T1DM model, in 2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI) (IEEE, 2017), pp. 259–264

    Google Scholar 

  47. Gy. Eigner, P. Pausits, L. Kovács, Control of T1DM via tensor product-based framework, in 2016 IEEE 17th International Symposium on Computational Intelligence and Informatics (CINTI) (IEEE, 2016), pp. 55–60

    Google Scholar 

  48. Gy. Eigner, I. Rudas, A. Szakál, L. Kovács, Tensor product based modeling of tumor growth, in 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (IEEE, 2017), pp. 900–905

    Google Scholar 

  49. Gy. Eigner, I. Rudas, L. Kovács, Investigation of the tp-based modeling possibility of a nonlinear icu diabetes model, in 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (IEEE, 2016), pp. 3405–3410

    Google Scholar 

  50. L Kovács, Gy. Eigner, Convex polytopic modeling of diabetes mellitus: a tensor product based approach, in 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (IEEE, 2016), pp. 003393–003398

    Google Scholar 

  51. J. Klespitz, I. Rudas, L. Kovács, LMI-based feedback regulator design via TP transformation for fluid volume control in blood purification therapies, in 2015 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (IEEE, 2015), pp. 2615–2619

    Google Scholar 

  52. S. Kuntanapreeda, Tensor product model transformation based control and synchronization of a class of fractional-order chaotic systems. Asian J. Control 17(2), 371–380 (2015)

    MathSciNet  MATH  Google Scholar 

  53. G. Zhao, D. Wang, Z. Song, A novel tensor product model transformation-based adaptive variable universe of discourse controller. J. Frankl. Inst. 353(17), 4471–4499 (2016)

    MathSciNet  MATH  Google Scholar 

  54. W. Qin, B. He, Q. Qin, G. Liu, Robust active controller of hypersonic vehicles in the presence of actuator constraints and input delays, in 2016 35th Chinese Control Conference (CCC) (IEEE, 2016), pp. 10718–10723

    Google Scholar 

  55. T. Wang, B. Liu. Different polytopic decomposition for visual servoing system with LMI-based predictive control, in 2016 35th Chinese Control Conference (CCC) (IEEE, 2016), pp. 10320–10324

    Google Scholar 

  56. T. Wang, W. Zhang, The visual-based robust model predictive control for two-DOF video tracking system, in 2016 Chinese Control and Decision Conference (CCDC) (IEEE, 2016), pp. 3743–3747

    Google Scholar 

  57. T. Jiang, D. Lin, Tensor product model-based gain scheduling of a missile autopilot. Trans. Jpn. Soc. Aeronaut. Space Sci. 59(3), 142–149 (2016)

    MathSciNet  Google Scholar 

  58. J. Pan, L. Lu, TP model transformation via sequentially truncated higher-order singular value decomposition. Asian J. Control 17(2), 467–475 (2015)

    MathSciNet  MATH  Google Scholar 

  59. R.-E. Precup, E.M. Petriu, M.-B. Rădac, S. Preitl, L.-O. Fedorovici, C.-A. Dragoş, Cascade control system-based cost effective combination of tensor product model transformation and fuzzy control. Asian J. Control 17(2), 381–391 (2015)

    MathSciNet  MATH  Google Scholar 

  60. Sz. Nagy, Z. Petres, P. Baranyi, H. Hashimoto, Computational relaxed TP model transformation: restricting the computation to subspaces of the dynamic model. Asian J. Control 11(5), 461–475 (2009)

    Google Scholar 

  61. J. Cui, K. Zhang, T. Ma, An efficient algorithm for the tensor product model transformation. Int. J. Control Autom. 14(5), 1205–1212 (2016)

    Google Scholar 

  62. A. Szollosi, P. Baranyi, Influence of the tensor product model representation of qLPV models on the feasibility of linear matrix inequality. Asian J. Control 18(4), 1328–1342 (2016)

    MathSciNet  MATH  Google Scholar 

  63. S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, vol. 15. Studies in Applied Mathematics (SIAM, Philadelphia, 1994)

    Google Scholar 

  64. K. Tanaka, H.O. Wang, Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach, 1st edn. (Wiley, Chichester, 2001)

    Google Scholar 

  65. M. Chilali, P. Gahinet. \(H_{\infty }\) design with pole placement constraints: an lmi approach

    Google Scholar 

  66. J.G. VanAntwerp, R.D. Braatz, A tutorial on linear and bilinear matrix inequalities. J. Process. Control 10, 363–385 (2000)

    Google Scholar 

  67. P. Gahinet, M. Chilali, P. Apkarian, Robust pole placement in LMI regions. IEEE Trans. Autom. Control 44(12), 2257–2270 (1999)

    MathSciNet  MATH  Google Scholar 

  68. J. Löfberg, Yalmip: a toolbox for modeling and optimization in matlab, in Proceedings of the CACSD Conference, Taipei, Taiwan (2004)

    Google Scholar 

  69. MOSEK ApS, The MOSEK optimization toolbox for MATLAB manual. Version 7.1 (Revision 28). (2015)

    Google Scholar 

  70. J.K. Tar, J. Bitó, L. Nádai, J.A. Tenreiro Machado, Robust fixed point transformations in adaptive control using local basin of attraction. Acta Polytech. Hung. 6(1), 21–37 (2009)

    Google Scholar 

  71. B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo, Robotics-Modelling, Planning and Control, Advanced Textbooks in Control and Signal Processing (Springer, Berlin, 2009)

    Google Scholar 

  72. Y. Tagawa, J.Y. Tu, D.P. Stoten, Inverse dynamics compensation via simulation of feedback control systems. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 225(1), 137–153 (2011)

    Google Scholar 

  73. H. Musoff, P. Zarchan, Fundamentals of Kalman Filtering: A Practical Approach , 3rd edn. (American Institute of Aeronautics and Astronautics, 2009)

    Google Scholar 

  74. J. Hartikainen, A. Solin, S. Särkkä, Optimal Filtering with Kalman Filters and Smoothers a Manual for the Matlab toolbox EKF/UKF. (Aalto University, 2011)

    Google Scholar 

  75. L. Kovács, Gy. Eigner, Tensor Product Model Transformation based Par-allel Distributed Control of Tumor Growth. Acta Polytech. Hung. 15(3), 101–123 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Levente Kovács .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Notations and Abbreviations

For the notations and abbreviations applied in this study please see Tables 1 and 2.

Table 1 General Phrases
Table 2 Mathematical terms

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eigner, G., Kovács, L. (2020). A TP-LPV-LMI Approach to Control of Tumor Growth. In: Kovács, L., Haidegger, T., Szakál, A. (eds) Recent Advances in Intelligent Engineering. Topics in Intelligent Engineering and Informatics, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-030-14350-3_12

Download citation

Publish with us

Policies and ethics