Advertisement

Brain Art pp 229-262 | Cite as

New Ways of Knowing Ourselves. BCI Facilitating Artistic Exploration of Our Biology

  • Laura JadeEmail author
  • Sam Gentle
Chapter

Abstract

As rapidly advancing technologies become more widely available, having access to tools that collect biometric data and in particular BCI technology, is providing artists with new ways of exploring our biological selves as well as creating new modes of audience interaction. Brainlight is a large illuminated interactive sculpture that integrates biology, lighting design and BCI technology to explore the hidden aspects of our minds. The installation is controlled with a wireless EMOTIV EPOC+ EEG headset that detects live neural activity which is translated into a light display within the brain sculpture. In real time it visualises the brain frequencies of Theta (3.5–7.5 Hz) as green light, Alpha (7.5–13 Hz) as blue light, and Beta (16–32 Hz) as red light. Previously, in more traditional art, when an audience views an artwork their own psychological process would be a passive, hidden, private experience. The aim of Brainlight is to harness the brain as the creator of an interactive art experience where no physical interplay is required except for the electrical activity of the mind. The project exposes some key developments in the use of BCI technology for artistic purposes, such as how to accurately collect and process EEG data aesthetically, and what license the artist can take with this data in order to facilitate meaning or allow space for the audience to bring their own meaning to the work. This chapter will explore these developments and outline the collaborative process behind the research and development of the work and the contexts in which it has subsequently been exhibited and used by the public.

Keywords

Electroencephalography (EEG) Brain-computer interface (BCI) Brain data visualisation Neurofeedback Interaction design Mind-controlled art Illuminated brain sculpture Interactive art Biofeedback art Art-science Audience 

References

  1. Adrian E, Matthews B (1934) The Berger rhythm: potential changes from the occipital lobes in man. Brain 57:355–385.  https://doi.org/10.1093/Brain/57.4.355CrossRefGoogle Scholar
  2. Ahani A, Wahbeh H, Nezamfar H et al (2014) Quantitative change of EEG and respiration signals during mindfulness meditation. J NeuroEng Rehabil 11:87.  https://doi.org/10.1186/1743-0003-11-87CrossRefGoogle Scholar
  3. Alonso J, Romero S, Ballester M et al (2015) Stress assessment based on EEG univariate features and functional connectivity measures. Physiol Meas 36:1351–1365.  https://doi.org/10.1088/0967-3334/36/7/1351CrossRefGoogle Scholar
  4. (2014) Amnesia Lab. UNSW Art & Design. In: Artdesign.unsw.edu.au. https://artdesign.unsw.edu.au/unsw-galleries/amnesia-lab. Accessed 26 Jan 2019
  5. Anadol R (2017) In: Refikanadol.com. http://refikanadol.com/works/melting-memories/. Accessed 13 Dec 2018
  6. Ascott R (1999) The technoetic predicate. Leonardo 32:219–220.  https://doi.org/10.1162/leon.1999.32.3.219CrossRefGoogle Scholar
  7. Barry A (2006) Perceptual aesthetics: transcendent emotion, neurological image. Vis Commun Q 13:134–151.  https://doi.org/10.1207/s15551407vcq1303_2CrossRefGoogle Scholar
  8. Brookes M (2018) Giant brain to light up Royal Society Summer Science Exhibition—The University of Nottingham. In: Nottingham.ac.uk. https://www.nottingham.ac.uk/news/pressreleases/2018/june/giant-brain-to-light-up-royal-society-summer-science-exhibition.aspx. Accessed 30 Jan 2019
  9. Cahn B, Polich J (2006) Meditation states and traits: EEG, ERP, and neuroimaging studies. Psychol Bull 132:180–211.  https://doi.org/10.1037/0033-2909.132.2.180CrossRefGoogle Scholar
  10. Cavanagh J, Zambrano-Vazquez L, Allen J (2011) Theta lingua franca: a common mid-frontal substrate for action monitoring processes. Psychophysiol 49:220–238.  https://doi.org/10.1111/j.1469-8986.2011.01293.x
  11. Chanda M, Levitin D (2013) The neurochemistry of music. Trends Cogn Sci 17:179–193.  https://doi.org/10.1016/j.tics.2013.02.007CrossRefGoogle Scholar
  12. Chiesa A, Serretti A (2009) A systematic review of neurobiological and clinical features of mindfulness meditations. Psychol Med 40:1239–1252.  https://doi.org/10.1017/s0033291709991747CrossRefGoogle Scholar
  13. Cross I (2006) Music, cognition, culture, and evolution. Ann N Y Acad Sci 930:28–42.  https://doi.org/10.1111/j.1749-6632.2001.tb05723.xCrossRefGoogle Scholar
  14. Duenyas Y (2011) The ascent mind controlled levitation ride—Yehuda Duenyas. In: Yehuda Duenyas. https://xxxyehuda.com/theascent/. Accessed 26 Jan 2019
  15. Dunn M (2013) What is the relationship between art and ethics? In: Theory of knowledge. https://www.theoryofknowledge.net/areas-of-knowledge/the-arts/what-is-the-relationship-between-art-and-ethics/. Accessed 15 Dec 2018
  16. Duvinage M, Castermans T, Petieau M et al (2013) Performance of the Emotiv Epoc headset for P300-based applications. BioMedical Eng OnLine 12:56.  https://doi.org/10.1186/1475-925x-12-56CrossRefGoogle Scholar
  17. Ekman P (1994) Strong evidence for universals in facial expressions: a reply to Russell’s mistaken critique. Psychol Bull 115:268–287.  https://doi.org/10.1037/0033-2909.115.2.268CrossRefGoogle Scholar
  18. Ekman U, Rokeby D (2014) Transformations of transforming mirrors: an interview with David Rokeby. Postmod Cult.  https://doi.org/10.1353/pmc.2014.0004
  19. Else J, Ellis J, Orme E (2015) Art expertise modulates the emotional response to modern art, especially abstract: an ERP investigation. Front Hum Neurosci.  https://doi.org/10.3389/fnhum.2015.00525
  20. Fleck S, Simon G (2013) An augmented reality environment for astronomy learning in elementary grades. In: Proceedings of the 25th ICME conference francophone on l‘Interaction Homme-Machine—IHM ‘13.  https://doi.org/10.1145/2534903.2534907
  21. Frey J, Gervais R, Fleck S et al (2014) Teegi: tangible EEG interface. In: UIST-ACM user interface software and technology symposiumGoogle Scholar
  22. Gruzelier J (2008) A theory of alpha/theta neurofeedback, creative performance enhancement, long distance functional connectivity and psychological integration. Cogn Process 10:101–109.  https://doi.org/10.1007/s10339-008-0248-5CrossRefGoogle Scholar
  23. Gruzelier J (2014) EEG-neurofeedback for optimising performance. II: Creativity, the performing arts and ecological validity. Neurosci Biobehav Rev 44:142–158.  https://doi.org/10.1016/j.neubiorev.2013.11.004CrossRefGoogle Scholar
  24. Gruzelier J, Hirst L, Holmes P, Leach J (2014) Immediate effects of alpha/theta and sensory-motor rhythm feedback on music performance. Int J Psychophysiol 93:96–104.  https://doi.org/10.1016/j.ijpsycho.2014.03.009CrossRefGoogle Scholar
  25. Gsöllpointner K (2016) Syn-aesthetics of digital art. In: Gsöllpointner K, Schnell R, Schuler R (eds) Digital synesthesia: a model for the aesthetics of digital art, 1st edn. De Gruyter, Berlin, Bostonpp 10–28Google Scholar
  26. Guljajeva V, Canet M, Mealla S (2018) NeuroKnitting | Varvara & Mar. In: Varvara & Mar. http://www.varvarag.info/neuroknitting/. Accessed 13 Dec 2018
  27. Gürkök H, Nijholt A (2013) Affective brain-computer interfaces for arts. In: 2013 Humaine Association conference on affective computing and intelligent interaction.  https://doi.org/10.1109/acii.2013.155
  28. Hammond D (2007) What is neurofeedback? J Neurother 10:25–36.  https://doi.org/10.1300/j184v10n04_04CrossRefGoogle Scholar
  29. Harvey A (2018) Music and the meeting of human minds. Front Psychol.  https://doi.org/10.3389/fpsyg.2018.00762
  30. Heanue M (2018) Group overview ‹ Affective computing—MIT Media Lab. In: MIT Media Lab. https://www.media.mit.edu/groups/affective-computing/overview/. Accessed 16 Dec 2018
  31. Herrmann C, Strüber D, Helfrich R, Engel A (2016) EEG oscillations: from correlation to causality. Int J Psychophysiol 103:12–21.  https://doi.org/10.1016/j.ijpsycho.2015.02.003CrossRefGoogle Scholar
  32. Hinterberger T, Fürnrohr E (2016) The sensorium: psychophysiological evaluation of responses to a multimodal neurofeedback environment. Appl Psychophysiol Biofeedback 41:315–329.  https://doi.org/10.1007/s10484-016-9332-2CrossRefGoogle Scholar
  33. Hjelm S, Browall C (2000) Brainball-using brain activity for cool competition. In: NordiCHI, pp 177–178Google Scholar
  34. Kawasaki M, Kitajo K, Yamaguchi Y (2010) Dynamic links between theta executive functions and alpha storage buffers in auditory and visual working memory. Eur J Neurosci.  https://doi.org/10.1111/j.1460-9568.2010.07217.x
  35. Khare KC, Nigam SK (2000) A study of electroencephalogram in meditators. Indian J Physiol Pharmacol 44:173–178Google Scholar
  36. Khut G (2015) Behind your eyes, between your ears: neurofeedback portrait project. In: George Khut. http://www.georgekhut.com/behind-your-eyes-between-your-ears/. Accessed 25 Jan 2019
  37. Khut G (2006) Development and evaluation of participant-centred biofeedback artworks. Doctor of Creative Arts (DCA), University of Western SydneyGoogle Scholar
  38. Kleinsmith A, Bianchi-Berthouze N (2013) Affective body expression perception and recognition: a survey. IEEE Trans Affect Comput 4:15–33.  https://doi.org/10.1109/t-affc.2012.16CrossRefGoogle Scholar
  39. Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev 29:169–195.  https://doi.org/10.1016/s0165-0173(98)00056-3CrossRefGoogle Scholar
  40. Lancel K, Maat H (2014) Lancel/Maat—E.E.G. KISS. In: Lancelmaat.nl. https://www.lancelmaat.nl/work/e.e.g-kiss/. Accessed 26 Jan 2019
  41. Leslie G, Mullen T (2011) MoodMixer: EEG-based collaborative sonification. In: Proceedings of the international conference on new interfaces for musical expression, pp 296–299Google Scholar
  42. Lucier A (1976) Statement on: music for solo performer. In: Rosenboom D (ed) Biofeedback and the arts, results of early experiments, 1st edn. Aesthetic Research Center of Canada, Vancouver, pp 60–61Google Scholar
  43. Lutz A, Dunne J, Davidson R (2007) Meditation and the neuroscience of consciousness: an introduction. Camb Handb Conscious 499–552.  https://doi.org/10.1017/cbo9780511816789.020
  44. Mantini D, Perrucci M, Del Gratta C et al (2007) Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci 104:13170–13175.  https://doi.org/10.1073/pnas.0700668104CrossRefGoogle Scholar
  45. Maskeliunas R, Damasevicius R, Martisius I, Vasiljevas M (2016) Consumer grade EEG devices: are they usable for control tasks? PeerJ 4:e1746.  https://doi.org/10.7717/peerj.1746CrossRefGoogle Scholar
  46. Menon S, Sinha A, Sreekantan B (2014) Interdisciplinary perspectives on consciousness and the self, 1st edn, pp 1–8Google Scholar
  47. Mercier-Ganady J, Lotte F, Loup-Escande E et al (2014) The mind-mirror: see your brain in action in your head using EEG and augmented reality. In: 2014 IEEE virtual reality (VR).  https://doi.org/10.1109/vr.2014.6802047
  48. Molina G, Tsoneva T, Nijholt A (2009) Emotional brain-computer interfaces. In: 2009 3rd international conference on affective computing and intelligent interaction and workshops.  https://doi.org/10.1109/acii.2009.5349478
  49. Moritz J (2017) Augmented humanity. Technoetic Arts 15:341–352.  https://doi.org/10.1386/tear.15.3.341_1CrossRefGoogle Scholar
  50. Mullen T, Khalil A, Ward T et al (2015) MindMusic: playful and social installations at the interface between music and the brain. In: Nijholt A (ed) More playful user interfaces. Interfaces that invite social and physical interaction, 1st edn. Springer, Singapore, pp 197–229Google Scholar
  51. Muller L, Bennett J, Froggett L, Bartlett V (2015) Understanding third space: evaluating art-science collaboration. In: 21st international symposium of electronic artGoogle Scholar
  52. Muller L, Froggett L, Bennett J (2018) Emergent knowledge in the third space of art-science. Leonardo 1–11.  https://doi.org/10.1162/leon_a_01690
  53. Mühl C, Allison B, Nijholt A, Chanel G (2014) A survey of affective brain computer interfaces: principles, state-of-the-art, and challenges. Brain Comput Interfaces 1:66–84.  https://doi.org/10.1080/2326263x.2014.912881CrossRefGoogle Scholar
  54. NEURON (2018) Blogul UMF » NEURON 2018. In: Blog.umftgm.ro. https://blog.umftgm.ro/tag/neuron-2018/. Accessed 10 Oct 2018
  55. Nijboer F, Clausen J, Allison B, Haselager P (2011) The Asilomar survey: stakeholders’ opinions on ethical issues related to brain-computer interfacing. Neuroethics 6:541–578.  https://doi.org/10.1007/s12152-011-9132-6CrossRefGoogle Scholar
  56. Papatheodorou T, Chambers T (2018) Random quark—creative technology studio. In: Randomquark.com. http://randomquark.com/case-studies/mindswarms.html. Accessed 13 Dec 2018
  57. Park L (2014) Lisa Park. In: Lisa Park. http://www.thelisapark.com/#/eunoia-ii/. Accessed 13 Dec 2018
  58. Pearlman E (2017) Brain opera: exploring surveillance in 360-degree immersive theatre. PAJ: J Perform Art 39:79–85.  https://doi.org/10.1162/pajj_a_00367
  59. Peper E, Ancoli-Israel S, Quinn M (1979) Mind/Body integration: essential readings in biofeedback, 1st edn. Plenum Press, New YorkCrossRefGoogle Scholar
  60. Perkins D (1994) The intelligent eye: learning to think by looking at art. Getty Center for Education in the Arts, Santa Monica, CalifGoogle Scholar
  61. Popian I (2014) iondesign | PROJECTS. In: iondesign. http://www.ionarch.com/projects. Accessed 13 Dec 2018
  62. Ray W, Cole H (1985) EEG alpha activity reflects attentional demands, and beta activity reflects emotional and cognitive processes. Science 228:750–752.  https://doi.org/10.1126/science.3992243
  63. Rokeby D (1995) Transforming mirrors: subjectivity and control in interactive media. In: Penny S (ed) Critical issues in electronic media, 1st edn. Suny Press, pp 133–158Google Scholar
  64. Schroeder A (2018) Schroeder-lab. In: Schroeder-lab. https://www.schroederlab.com/. Accessed 10 Oct 2018
  65. Schroeder A. Avi Schroeder - Open image in new window https://chemeng.technion.ac.il/avi-schroeder/. Accessed 10 Oct 2018
  66. Sherry J (2015) Neuroscience and communication. Commun Methods Meas 9:117–122.  https://doi.org/10.1080/19312458.2014.999756CrossRefGoogle Scholar
  67. Sobell N (2019) Nina Sobell: artist statement http://ninasobell.com. Accessed 25 Jan 2019
  68. Silvia P (2005) Emotional responses to art: from collation and arousal to cognition and emotion. Rev Gen Psychol 9:342–357.  https://doi.org/10.1037/1089-2680.9.4.342CrossRefGoogle Scholar
  69. Stamps K, Hamam Y (2010) Towards inexpensive BCI control for wheelchair navigation in the enabled environment—a hardware survey. In: International conference on brain informatics. Springer, Berlin, Heidelberg, pp 336–345CrossRefGoogle Scholar
  70. Tamburrini G (2009) Brain to computer communication: ethical perspectives on interaction models. Neuroethics 2:137–149.  https://doi.org/10.1007/s12152-009-9040-1CrossRefGoogle Scholar
  71. Vygandas Š (2018) Humanizing technology through post-digital art. PhD, KTH Royal Institute of TechnologyGoogle Scholar
  72. Wadeson A, Nijholt A, Nam C (2015) Artistic brain-computer interfaces: state-of-the-art control mechanisms. Brain Comput Interfaces 2:70–75.  https://doi.org/10.1080/2326263x.2015.1103155CrossRefGoogle Scholar
  73. Wellington J (1990) Formal and informal learning in science: the role of the interactive science centres. Phys Educ 25:247–252.  https://doi.org/10.1088/0031-9120/25/5/307CrossRefGoogle Scholar
  74. Zioga P, Chapman P, Ma M, Pollick F (2014) A wireless future: performance art, interaction and the brain-computer interfaces. In: Proceedings of Inter-Face: international conference on live interfaces (ICLI 2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.SydneyAustralia

Personalised recommendations