Brain Art pp 161-206 | Cite as

Using Synchrony-Based Neurofeedback in Search of Human Connectedness

  • Suzanne DikkerEmail author
  • Sean Montgomery
  • Suzan Tunca


In this chapter, we explore whether brain-computer interface (BCI) applications can embody the elusiveness of human connectedness. Concretely, we discuss a series of art/neuroscience works that track and visualize the extent to which brainwaves and physiological responses become synchronized between people and their environment. From a neuroscientific point of view, we ask whether such synchrony is ‘meaningful’, i.e., do these data streams (brainwaves, heart rate, movement) tell us something about how connected we feel to each other (“when we feel in sync with someone, are our brainwaves literally on the same wavelength?”). From an artistic, experiential point of view, we ask whether these works can raise critical questions about our often unsatisfactory quest to connect to ourselves and each other: via face-to-face interactions, scientific inquiry, tech-based communication tools, big data; about the exclusionary nature of groups, both in the real and virtual world. Finally, do the works stands on their own—independent of such research questions—as immersive, interactive aesthetic experiences, allowing visitors to gauge and explore their own interactions in a visceral, intuitive way?


Art-science interface Hyperscanning BCI Crowdsourcing neuroscience Synchrony Brain rhythms EEG Biofeedback art 



Dikker and Oostrik’s work is supported by Stichting Niemeijer Fonds, The Netherlands Organization for Scientific Research (VENI grant 275-89-018), Creative Industries Fund NL, TodaysArt, MAI, de Hersenstichting, Lowlands Science, Utrecht University, NEON. Montgomery’s work is supported by: ISEA, Science Gallery at Trinity College Dublin, Harvestworks, National Endowment for the Arts, Rockefeller Foundation, Daejeon Museum of Art, Center for Life, RIXC Art Science Festival, OUTPOST Artist Resources, Ende Tymes Festival.


  1. Abramović (2010) Marina Abramović: the artist speaks. Inside/Out. A MoMA/MoMA PS1 blog.
  2. Akbas A (2011) Evaluation of the physiological data indicating the dynamic stress level of drivers. Sci Res Essays 6(2):430–439Google Scholar
  3. Anderson KL, Ding M (2011) Attentional modulation of the somatosensory mu rhythm. Neuro 180:165–180Google Scholar
  4. Arnal LH, Giraud AL (2012) Cortical oscillations and sensory predictions. Trends Cogn Sci 16:390–398CrossRefGoogle Scholar
  5. Aron A, Aron EN, Smollan D (1992) Inclusion of other in the self scale and the structure of interpersonal closeness. J Person Soc Psych 63(4):596CrossRefGoogle Scholar
  6. Assaneo MF, Ripolles P, Orpella J, Ming-Lin, W, de Diego-Balaguer R, Poeppel D (2019) Spontaneous synchronization to speech reveals neural mechanisms facilitating language learning. Nat NeurosciGoogle Scholar
  7. Atmaca S, Sebanz N, Knoblich G (2011) The joint flanker effect: sharing tasks with real and imagined co-actors. Exp Brain Res 211(3–4):371–385CrossRefGoogle Scholar
  8. Atmanspacher H, Fuchs CA (2014) The Pauli-Jung conjecture and its impact today. Andrews UK LimitedGoogle Scholar
  9. Babiloni F, Astolfi L (2014) Social neuroscience and hyperscanning techniques: past, present and future. Neurosci Biobehav Rev 4:476–493Google Scholar
  10. Babiloni F, Cincotti F, Mattia D, Mattiocco M, Fallani FD, Tocci A, Bianchi L, Marciani MG, Astolfi L (2006) Hypermethods for EEG hyperscanning. In: Engineering in Medicine and Biology Society 28th annual international conference of the IEEE 30 Aug 2006, pp 3666–3669Google Scholar
  11. Babiloni F, Astolfi L, Cincotti F, Mattia D, Tocci A, Tarantino A, Marciani MG, Salinari S, Gao S, Colosimo A, Fallani FD (2007) Cortical activity and connectivity of human brain during the prisoner’s dilemma: an EEG hyperscanning study. In: Engineering in Medicine and Biology Society, EMBS 29th annual international conference of the IEEE, 22 Aug 2007 pp 4953–4956Google Scholar
  12. Bachrach A, Fontbonne Y, Joufflineau C, Ulloa JL (2015) Audience entrainment during live contemporary dance performance: physiological and cognitive measures. Front Hum Neurosci 9:179CrossRefGoogle Scholar
  13. Baek HJ, Lee HB, Kim JS, Choi JM, Kim KK, Park KS (2009) Nonintrusive biological signal monitoring in a car to evaluate a driver’s stress and health state. Telemed e-Health 15(2):182–189CrossRefGoogle Scholar
  14. Bar M (2007) The proactive brain: using analogies and associations to generate predictions. Trends Cogn Sci 11:280–289CrossRefGoogle Scholar
  15. Bašnáková J, Weber K, Petersson KM, van Berkum J, Hagoort P (2013) Beyond the language given: the neural correlates of inferring speaker meaning. Cereb Cortex 24(10):2572–2578CrossRefGoogle Scholar
  16. Bastiaansen M, Hagoort P (2006) Oscillatory neuronal dynamics during language comprehension. Prog Brain Res 159:179–196CrossRefGoogle Scholar
  17. Beauchene C, Abaid N, Moran R, Diana RA, Leonessa A (2017) The effect of binaural beats on verbal working memory and cortical connectivity. J Neural Eng 14(2):026014CrossRefGoogle Scholar
  18. Benford S, Greenhalgh C, Crabtree A, Flintham M, Walker B, Marshall J, Koleva B, Rennick Egglestone S, Giannachi G, Adams M, Tandavanitj N (2013) Performance-led research in the wild. ACM TOCHI 20(3):14CrossRefGoogle Scholar
  19. Bevilacqua D, Davidesco I, Wan L, Oostrik M, Chaloner K, Rowland J, Ding M, Poeppel D, Dikker S (2018) Brain-to-brain synchrony and learning outcomes vary by student–teacher dynamics: evidence from a real-world classroom electroencephalography study. J Cogn Neurosci 1–11Google Scholar
  20. Bhattacharya J (2017) Cognitive neuroscience: synchronizing brains in the classroom. Curr Biol 27(9):R346–R348CrossRefGoogle Scholar
  21. Böckler A, Knoblich G, Sebanz N (2012) Effects of a coactor’s focus of attention on task performance. J Exp Psychol: Hum Percept Perform 38(6):1404Google Scholar
  22. Brenninkmeijer J (2013) Neurofeedback as a dance of agency. BioSocieties 8(2):144–163CrossRefGoogle Scholar
  23. Buzsáki G (2006) Rhythms of the brain. Oxford University Press, New York, NY, USCrossRefzbMATHGoogle Scholar
  24. Cacioppo JT, Bernston GG, Larsen JT, Poehlmann KM, Ito TA (2000) The psychophysiology of emotion. In: Handbook of emotions. The psychophysiology of emotion. Guilford, pp 173–191Google Scholar
  25. Cai H, Lin Y (2011) Modeling of operators’ emotion and task performance in a virtual driving environment. Int J Hum Comput Stud 69:571–586Google Scholar
  26. Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE, Berger MS, Barbaro NM, Knight RT (2006) High gamma power is phase-locked to theta oscillations in human neocortex. Science 313(5793):1626–1628CrossRefGoogle Scholar
  27. Collet C, Clarion A, Morel M, Chapon A, Petit C (2009) Physiological and behavioural changes associated to the management of secondary tasks while driving. Appl Ergon (England) 40:1041–1046CrossRefGoogle Scholar
  28. Davis M (1996) Interpersonal reactivity index. In: Empathy: a social psychological approach, pp 55–56Google Scholar
  29. de Graaf TA, Gross J, Paterson G, Rusch T, Sack AT, Thut G (2013) Alpha-band rhythms in visual task performance: phase-locking by rhythmic sensory stimulation. PLoS ONE 8(3):e60035CrossRefGoogle Scholar
  30. Debener S, Minow F, Emkes R, Gandras K, De Vos M (2012) How about taking a low-cost, small, and wireless EEG for a walk? Psychophysiology 49(11):1617–1621CrossRefGoogle Scholar
  31. Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Annu Rev Neurosci 18(1):193–222CrossRefGoogle Scholar
  32. Dikker S, Pylkkänen L (2013) Predicting language: MEG evidence for lexical preactivation. Brain Lang 127(1):55–64CrossRefGoogle Scholar
  33. Dikker S, Rabagliati H, Pylkkänen L (2009) Sensitivity to syntax in visual cortex. Cognition 110(3):293–321CrossRefGoogle Scholar
  34. Dikker S, Rabagliati H, Farmer TA, Pylkkänen L (2010) Early occipital sensitivity to syntactic category is based on form typicality. Psychol Sci 21(5):629–634CrossRefGoogle Scholar
  35. Dikker S, Silbert LJ, Hasson U, Zevin JD (2014) On the same wavelength: predictable language enhances speaker–listener brain-to-brain synchrony in posterior superior temporal gyrus. J Neurosci 34(18):6267–6272CrossRefGoogle Scholar
  36. Dikker S, Wan L, Davidesco I, Kaggen L, Oostrik M, McClintock J, Rowland J, Michalareas G, Van Bavel JJ, Ding M, Poeppel D (2017) Brain-to-brain synchrony tracks real-world dynamic group interactions in the classroom. Curr Biol 27(9):1375–1380CrossRefGoogle Scholar
  37. Dikker S, Michalareas G, Oostrik M, Kahraman H, Serafimaki A, Struiksma ME, Poeppel D (in revision) Crowdsourcing neuroscience: brain synchrony during face-to-face interaction outside the laboratoryGoogle Scholar
  38. Doelling KB, Poeppel D (2015) Cortical entrainment to music and its modulation by expertise. Proc Natl Acad Sci USA 112(45):E6233–E6242CrossRefGoogle Scholar
  39. Donoghue JP, Sanes JN, Hatsopoulos NG, Gaal G (1998) Neural discharge and local field potential oscillations in primate motor cortex during voluntary movements. J Neurophysiol 79:159–173CrossRefGoogle Scholar
  40. Dumas G, Nadel J, Soussignan R, Martinerie J, Garnero L (2010) Inter-brain synchronization during social interaction. PLoS ONE 5(8):e12166CrossRefGoogle Scholar
  41. Eldred SM (2016) Art–science collaborations: change of perspective. Nature 537(7618):125–126CrossRefGoogle Scholar
  42. Enns JT, Lleras A (2008) What’s next? New evidence for prediction in human vision. Trends Cogn Sci 12:327–333CrossRefGoogle Scholar
  43. Federmeier KD (2007) Thinking ahead: the role and roots of prediction in language comprehension. Psychophysiology 44:491–505CrossRefGoogle Scholar
  44. Fox NA, Bakermans-Kranenburg MJ, Yoo KH, Bowman LC, Cannon EN, Vanderwert RE, Ferrari PF, van IJzendoorn MH (2016) Assessing human mirror activity with EEG mu rhythm: a meta-analysis. Psychol Bull 142(3):291–313Google Scholar
  45. Friston K (2003) Learning and inference in the brain. Neural Netw 16:1325–1352CrossRefGoogle Scholar
  46. Gandomi A, Haider M (2015) Beyond the hype: Big data concepts, methods, and analytics. Int J Inf Manag 35(2):137–144CrossRefGoogle Scholar
  47. Garrod S, Pickering MJ (2009) Joint action, interactive alignment, and dialog. Trends Cogn Sci 1(2):292–304Google Scholar
  48. Goede MNM (2017) Narrating the brain through neurofeedback art. Master’s thesis, University of Amsterdam, Amsterdam, the Netherlands.
  49. Goldstein P, Weissman-Fogel I, Dumas G, Shamay-Tsoory SG (2018) Brain-to-brain coupling during handholding is associated with pain reduction. Proc Natl Acad Sci USA 201703643Google Scholar
  50. Golumbic EMZ, Ding N, Bickel S, Lakatos P, Schevon CA, McKhann GM, Goodman RR, Emerson R, Mehta AD, Simon JZ, Poeppel D, Schroeder CE (2013) Mechanisms underlying selective neuronal tracking of attended speech at a “cocktail party”. Neuron 77(5):980–991CrossRefGoogle Scholar
  51. Gomez-Ramirez M, Kelly SP, Molholm S, Sehatpour P, Schwartz TH, Foxe JJ (2011) Oscillatory sensory selection mechanisms during intersensory attention to rhythmic auditory and visual inputs: a human electrocorticographic investigation. J Neurosci 31(50):18556–18567CrossRefGoogle Scholar
  52. Gruber T, Tsivilis D, Giabbiconi CM, Müller MM (2008) Induced electroencephalogram oscillations during source memory: familiarity is reflected in the gamma band, recollection in the theta band. J Cogn Neurosci 20(6):1043–1053CrossRefGoogle Scholar
  53. Haegens S, Golumbic EZ (2017) Rhythmic facilitation of sensory processing: a critical review. Neuro Biobehav RevGoogle Scholar
  54. Hari R, Kujala MV (2009) Brain basis of human social interaction: from concepts to brain imaging. Physiol Rev 89(2):453–479CrossRefGoogle Scholar
  55. Hari R, Himberg T, Nummenmaa L, Hämäläinen M, Parkkonen L (2013) Synchrony of brains and bodies during implicit interpersonal interaction. Trends Cogn SciGoogle Scholar
  56. Hasson U, Frith CD (2016) Mirroring and beyond: coupled dynamics as a generalized framework for modelling social interactions. Philos Trans R Soc B 371(1693):20150366CrossRefGoogle Scholar
  57. Hasson U, Ghazanfar AA, Galantucci B, Garrod S, Keysers C (2012) Brain-to-brain coupling: a mechanism for creating and sharing a social world. Trends Cogn Sci 16(2):114–121CrossRefGoogle Scholar
  58. Healey JA, Picard RW (2005) Detecting stress during real-world driving tasks using physiological sensors. IEEE Trans Intell Transp Syst 6:156–166Google Scholar
  59. Hipp JF, Hawellek DJ, Corbetta M, Siegel M, Engel AK (2012) Large-scale cortical correlation structure of spontaneous oscillatory activity. Nat Neurosci 15(6):884–890CrossRefGoogle Scholar
  60. Howlin C, Orgs G, Vicary S (2017) The impact of soundtrack congruency on the aesthetic experience of contemporary dance: exploring aesthetic interaction in terms of arousal and enjoyment ratings in three audio settings. Age 1000:29–6Google Scholar
  61. Jeffries S (2011) When two tribes meet: collaborations between artists and scientists. The Guardian. Accessed 26 Nov 2016
  62. Jiang L, Stocco A, Losey DM, Abernethy JA, Prat CS, Rao RP (2018) BrainNet: a multi-person brain-to-brain interface for direct collaboration between brains. arXiv:1809.08632
  63. Jirakittayakorn N, Wongsawat Y (2017) Brain responses to a 6-Hz binaural beat: effects on general theta rhythm and frontal midline theta activity. Front Neurosci 11:365CrossRefGoogle Scholar
  64. Jung CG (2012) Synchronicity: an acausal connecting principle (from vol 8 of the Collected Works of C. G. Jung). Princeton University Press, pp 114–115Google Scholar
  65. Keitel C, Quigley C, Ruhnau P (2014) Stimulus-driven brain oscillations in the alpha range: entrainment of intrinsic rhythms or frequency-following response? J Neurosci 34(31):10137–10140CrossRefGoogle Scholar
  66. Kerfeld CA (2009) When art, science, and culture commingle. PLoS Biol 7(5):e1000100CrossRefGoogle Scholar
  67. Keysers C, Gazzola V (2009) Expanding the mirror: vicarious activity for actions, emotions, and sensations. Curr Opin Neurobiol 19(6):666–671CrossRefGoogle Scholar
  68. Kinreich S, Djalovski A, Kraus L, Louzoun Y, Feldman R (2017) Brain-to-brain synchrony during naturalistic social interactions. Sci Rep 7(1):17060CrossRefGoogle Scholar
  69. Knoblich G, Butterfill S, Sebanz N (2011) 3 psychological research on joint action: theory and data. Psychol Learn Motiv Adv Res Theory 54:59CrossRefGoogle Scholar
  70. Konvalinka I, Vuust P, Roepstorff A, Frith CD (2010) Follow you, follow me: continuous mutual prediction and adaptation in joint tapping. Q J Exp Psychol 63(11):2220–2230CrossRefGoogle Scholar
  71. Lakatos P, Shah AS, Knuth KH, Ulbert I, Karmos G, Schroeder CE (2005) An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. J Neurophys 94(3):1904–1911CrossRefGoogle Scholar
  72. Lakatos P, Karmos G, Mehta AD, Ulbert I, Schroeder CE (2008) Entrainment of neuronal oscillations as a mechanism of attentional selection. Science 320(5872):110–113CrossRefGoogle Scholar
  73. Levy J, Goldstein A, Influs M, Masalha S, Zagoory-Sharon O, Feldman R (2016) Adolescents growing up amidst intractable conflict attenuate brain response to pain of outgroup. Proc Natl Acad Sci USA 113(48):13696–13701CrossRefGoogle Scholar
  74. Lisetti CL, Nasoz F (2004) Using noninvasive wearable computers to recognize human emotions from physiological signals. EURASIP J Adv Signal Process 2004:1672–1687CrossRefGoogle Scholar
  75. Lumsden J, Miles LK, Richardson MJ, Smith CA, Macrae NC (2012) Who syncs? social motives and interpersonal coordination. J Exp Soc Psychol 48:746–751Google Scholar
  76. Marsh KL, Richardson MJ, Baron RM, Schmidt RC (2006) Contrasting approaches to perceiving and acting with others. Eco Psychol 18(1):1–38CrossRefGoogle Scholar
  77. Marsh KL, Isenhower RW, Richardson MJ, Helt M, Verbalis AD, Schmidt RC, Fein D (2013) Autism and social disconnection in interpersonal rocking. Front Integr Neurosci 7Google Scholar
  78. Mathewson KE, Prudhomme C, Fabiani M, Beck DM, Lleras A, Gratton G (2012) Making waves in the stream of consciousness: entraining oscillations in EEG alpha and fluctuations in visual awareness with rhythmic visual stimulation. J Cogn Neurosci 24(12):2321–2333CrossRefGoogle Scholar
  79. Matusz PJ, Dikker S, Huth AG, Perrodin C (2018) Are we ready for real-world neuroscience? J Cogn NeurosciGoogle Scholar
  80. Mehler B, Reimer B, Coughlin JF (2012) Sensitivity of physiological measures for detecting systematic variations in cognitive demand from a working memory task: an on-road study across three age groups. Hum Factors (United States) 54:396–412Google Scholar
  81. Meyer L, Henry MJ, Gaston P, Schmuck N, Friederici AD (2016) Linguistic bias modulates interpretation of speech via neural delta-band oscillations. Cereb Cortex 27(9):4293–4302Google Scholar
  82. Miller AI (2014) Colliding worlds: how cutting-edge science is redefining contemporary art. WW Nort CompGoogle Scholar
  83. Montgomery SM, Laefsky I (2011) Bio-sensing: hacking the doors of perception. Make Magazine 26:104–111Google Scholar
  84. Mullen T, Khalil A, Ward T, Iversen J, Leslie G, Warp R, Whitman M, Minces V, McCoy A, Ojeda A, Bigdely-Shamlo N (2015) MindMusic: playful and social installations at the interface between music and the brain. In: More playful user interfaces. Springer, Singapore, pp 197–229Google Scholar
  85. Neuper C, Pfurtscheller G (1999) Motor imagery and ERD. In: Pfurtscheller G, Lopes da Silva FH (eds) Event-related desynchronization, revised edition Handbook. Electroencephalogr Clin Neurophysiol vol 6. Elsevier, Amsterdam, pp 303–325Google Scholar
  86. Nijholt A (2015) Competing and collaborating brains: multi-brain computer interfacing. In: Brain-computer interfaces. Springer, Cham, pp 313–335Google Scholar
  87. Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M (2004) Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin Neurophysiol 115(10):2292–2307CrossRefGoogle Scholar
  88. Orgs G, Caspersen D, Haggard P (2016) You move, I watch, it matters: aesthetic communication in dance. Shar Represent: Sensorimotor Found Soc Life 627–654Google Scholar
  89. Parada FJ, Rossi A (2017) Commentary: brain-to-brain synchrony tracks real-world dynamic group interactions in the classroom and cognitive neuroscience: synchronizing brains in the classroom. Front Hum Neurosci 11:554CrossRefGoogle Scholar
  90. Paxton A, Dale R (2012) Frame-differencing methods for measuring bodily synchrony in conversation. Behav Res Methods 1–15Google Scholar
  91. Peelle JE, Davis MH (2012) Neural oscillations carry speech rhythm through to comprehension. Front Psychol 3:320CrossRefGoogle Scholar
  92. Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophys 110(11):1842–1857CrossRefGoogle Scholar
  93. Pfurtscheller G, Neuper C (1994) Event-related synchronization of mu rhythm in the EEG over the cortical hand area in man. Neuro Lett 174(1):93–96CrossRefGoogle Scholar
  94. Picard RW (1995) Affective computing. M.I.T Media Laboratory Perceptual Computing Section Technical Report No. 321Google Scholar
  95. Pickering MJ, Garrod S (2013) An integrated theory of language production and comprehension. Behav Brain Sci 36(4):329–347CrossRefGoogle Scholar
  96. Pineda JA, Brang D, Hecht E, Edwards L, Carey S, Bacon M, Futagaki C, Suk D, Tom J, Birnbaum C, Rork A (2008) Positive behavioral and electrophysiological changes following neurofeedback training in children with autism. Res Autism Spectr Disord 2(3):557–581CrossRefGoogle Scholar
  97. Powers SR, Rauh C, Henning RA, Buck RW, West TV (2011) The effect of video feedback delay on frustration and emotion communication accuracy. Comput Hum Behav 27(5):1651–1657CrossRefGoogle Scholar
  98. Prusinkiewicz P (1998) In search of the right abstraction: the synergy between art, science, and information technology in the modeling of natural phenomena. NaGoogle Scholar
  99. Ramnani N, Miall RC (2003) A system in the human brain for predicting the actions of others. Nat Neurosci 7(1):85–90CrossRefGoogle Scholar
  100. Richardson MJ, Marsh KL, Isenhower RW, Goodman JR, Schmidt RC (2007) Rocking together: dynamics of intentional and unintentional interpersonal coordination. Hum Mov Sci 26(6):867–891CrossRefGoogle Scholar
  101. Richardson DC, Dale R, Shockley K (2008) Synchrony and swing in conversation: coordination, temporal dynamics, and communication. Embodied Commun Hum Mach 75–93Google Scholar
  102. Rigas G, Goletsis Y, Fotiadis DI (2012) Real-time driver’s stress event detection. IEEE Trans Intell Transp Syst 13:221–234CrossRefGoogle Scholar
  103. Sänger J, Lindenberger U, Müller V (2011) Interactive brains, social minds. Commun Integr Biol 4(6):655–663CrossRefGoogle Scholar
  104. Schroeder CE, Lakatos P (2008) Low-frequency neuronal oscillations as instruments of sensory selection. Trends Neurosci 32(1):9–18CrossRefGoogle Scholar
  105. Sebanz N, Bekkering H, Knoblich G (2006) Joint action: bodies and minds moving together. Trends Cogn Sci 10(2):70–76CrossRefGoogle Scholar
  106. Shteynberg G (2010) A silent emergence of culture: the social tuning effect. J Pers Soc Psychol 99(4):683CrossRefGoogle Scholar
  107. Spaak E, de Lange FP, Jensen O (2014) Local entrainment of alpha oscillations by visual stimuli causes cyclic modulation of perception. J Neurosci 34(10):3536–3544CrossRefGoogle Scholar
  108. Stephens GJ, Silbert LJ, Hasson U (2010) Speaker–listener neural coupling underlies successful communication. Proc Natl Acad Sci USA 107(32):14425–14430CrossRefGoogle Scholar
  109. Stern DN (1985) The interpersonal world of the infant: a view from psychoanalysis and developmental psychology. Karnac BooksGoogle Scholar
  110. Stevens C, O’Connor G (2017) When artists get involved in research, science benefits. The Conversation.
  111. Stivers T, Enfield NJ, Brown P, Englert C, Hayashi M, Heinemann T, Levinson SC (2009) Universals and cultural variation in turn-taking in conversation. Proc Natl Acad Sci USA 106(26):10587–10592CrossRefGoogle Scholar
  112. Sun X, Lichtenauer J, Valstar M, Nijholt A, Pantic M (2011) A multimodal database for mimicry analysis. In: International conference on affective computing and intelligent interaction, October 9. Springer, Berlin, Heidelberg, pp 367–376Google Scholar
  113. Tognoli E, Lagarde J, DeGuzman GC, Kelso JA (2007) The phi complex as a neuromarker of human social coordination. Proc Natl Acad Sci USA 104(19):8190–8195CrossRefGoogle Scholar
  114. Van Berkum JJA (2013) Anticipating communication. Theor Lin 39(1–2):75–86Google Scholar
  115. Van Berkum JJ, Brown CM, Zwitserlood P, Kooijman V, Hagoort P (2005) Anticipating upcoming words in discourse: evidence from ERPs and reading times. J Exp Psychol Learn Mem Cogn 31(3):443CrossRefGoogle Scholar
  116. Van Berkum JJA, Holleman B, Nieuwland MS, Otten M, Murre J (2009) Right or wrong? The brain’s fast response to morally objectionable statements. Psychol Sci 20:1092–1099CrossRefGoogle Scholar
  117. Van den Brink D, Van Berkum JJA, Bastiaansen MCM, Tesink CMJY, Kos M, Buitelaar JK, Hagoort P (2012) Empathy matters: ERP evidence for inter-individual differences in social language processing. Soc Cogn Affect Neurosci 7:173–182CrossRefGoogle Scholar
  118. Van Essen DC, Smith SM, Barch DM, Behrens TE, Yacoub E, Ugurbil K, Wu-Minn HCP Consortium (2013) The WU-Minn human connectome project: an overview. Neuroimage 80:62–79CrossRefGoogle Scholar
  119. Verbeke WJ, Pozharliev R, Van Strien JW, Belschak F, Bagozzi RP (2014) “I am resting but rest less well with you.” The moderating effect of anxious attachment style on alpha power during EEG resting state in a social context. Front Hum Neurosci 8:486Google Scholar
  120. von Zimmermann J, Vicary S, Sperling M, Orgs G, Richardson DC (2018) The choreography of group affiliation. Top Cogn Sci 10(1):80–94CrossRefGoogle Scholar
  121. Watson D, Clark LA (1994) The PANAS-X: manual for the positive and negative affect schedule-expanded form. Uni Iowa, AmesGoogle Scholar
  122. Williams JH (2001) Frequency-specific effects of flicker on recognition memory. Neuroscience 104(2):283–286CrossRefGoogle Scholar
  123. Williams J, Ramaswamy D, Oulhaj A (2006) 10 Hz flicker improves recognition memory in older people. BMC Neurosci 7:21Google Scholar
  124. Wilson EO (2012) The social conquest of earth. WW Nort CompGoogle Scholar
  125. Wu CH, Chang HC, Lee PL, Li KS, Sie JJ, Sun CW, Yang CY, Li PH, Deng HT, Shyu KK (2011) Frequency recognition in an SSVEP-based brain computer interface using empirical mode decomposition and refined generalized zero-crossing. J Neurosci Methods 196(1):170–181CrossRefGoogle Scholar
  126. Yun K (2013) On the same wavelength: face-to-face communication increases interpersonal neural synchronization. J Neurosci 33(12):5081–5082CrossRefGoogle Scholar
  127. Zamm A, Debener S, Bauer AKR, Bleichner MG, Demos AP, Palmer C (2018) Amplitude envelope correlations measure synchronous cortical oscillations in performing musicians. Ann N Y Acad SciGoogle Scholar
  128. Zhang D, Maye A, Gao X, Hong B, Engel AK, Gao S (2010) An independent brain–computer interface using covert non-spatial visual selective attention. J Neural Eng 7(1):016010CrossRefGoogle Scholar
  129. Zink R, Hunyadi B, Van Huffel S, De Vos M (2016) Mobile EEG on the bike: disentangling attentional and physical contributions to auditory attention tasks. J Neural Eng 13(4):046017CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Suzanne Dikker
    • 1
    • 2
    • 7
    Email author
  • Sean Montgomery
    • 3
    • 8
  • Suzan Tunca
    • 4
    • 5
    • 6
  1. 1.Utrecht UniversityUtrechtThe Netherlands
  2. 2.New York UniversityNew York CityUSA
  3. 3.Produce Consume RobotNew York CityUSA
  4. 4.ICK AmsterdamAmsterdamThe Netherlands
  5. 5.CODARTS University of the ArtsRotterdamThe Netherlands
  6. 6.PhDArts Leiden UniversityLeidenThe Netherlands
  7. 7.DIKKER + OOSTRIKAmsterdamThe Netherlands
  8. 8.Produce Consume RobotNew York CityUSA

Personalised recommendations