Skip to main content

On the Mental Workload Assessment of Uplift Mapping Representations in Linked Data

Part of the Communications in Computer and Information Science book series (CCIS,volume 1012)

Abstract

Self-reporting procedures have been largely employed in literature to measure the mental workload experienced by users when executing a specific task. This research proposes the adoption of these mental workload assessment techniques to the task of creating uplift mappings in Linked Data. A user study has been performed to compare the mental workload of “manually” creating such mappings, using a formal mapping language and a text editor, to the use of a visual representation, based on the block metaphor, that generate these mappings. Two subjective mental workload instruments, namely the NASA Task Load Index and the Workload Profile, were applied in this study. Preliminary results show the reliability of these instruments in measuring the perceived mental workload for the task of creating uplift mappings. Results also indicate that participants using the visual representation achieved smaller and more consistent scores of mental workload.

Keywords

  • Mental workload
  • Uplift mapping representations
  • Linked Data

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-14273-5_10
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   64.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-14273-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   84.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Notes

  1. 1.

    http://www.w3.org/TR/rdf11-concepts/.

  2. 2.

    http://lod-cloud.net/

  3. 3.

    http://xmlns.com/foaf/0.1/

  4. 4.

    https://scratch.mit.edu/, last accessed May 2018

  5. 5.

    TURTLE is only one of the many standardized RDF representations. TURTLE was chosen as it is terse, and one of the more usable and easier to read representations. Even the R2RML W3C Recommendation uses TURTLE for their examples.

  6. 6.

    Available at https://www.scss.tcd.ie/~crottija/juma/r2rml.pdf and https://www.youtube.com/watch?v=fn5mKGGj2us.

  7. 7.

    Available at https://www.scss.tcd.ie/~crottija/juma/juma.pdf and https://www.youtube.com/watch?v=Q97YeZtu_tA.

  8. 8.

    Available at https://github.com/dalers/mywind.

  9. 9.

    http://xmlns.com/foaf/0.1/.

  10. 10.

    http://www.w3.org/2000/01/rdf-schema.

  11. 11.

    https://jena.apache.org/, accessed May 2018.

  12. 12.

    https://github.com/antidot/db2triples, accessed in May 2018.

References

  1. Albers, M.: Tapping as a measure of cognitive load and website usability. In: Proceedings of the 29th ACM International Conference on Design of Communication, pp. 25–32 (2011). https://doi.org/10.1145/2038476.2038481

  2. Balfe, N., Crowley, K., Smith, B., Longo, L.: Estimation of train driver workload: extracting taskload measures from on-train-data-recorders. In: Longo, L., Leva, M.C. (eds.) H-WORKLOAD 2017. CCIS, vol. 726, pp. 106–119. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61061-0_7

    CrossRef  Google Scholar 

  3. Bart, A.C., Tibau, J., Kafura, D., Shaffer, C.A., Tilevich, E.: Design and evaluation of a block-based environment with a data science context. IEEE Trans. Emerg. Top. Comput. (2017). https://doi.org/10.1109/TETC.2017.2729585

  4. Bizer, C., Heath, T., Berners-Lee, T.: Linked data-the story so far. Int. J. Semant. Web Inf. Syst. 5(3), 1–22 (2009). https://doi.org/10.4018/jswis.2009081901

    CrossRef  Google Scholar 

  5. Cain, B.: A review of the mental workload literature. Technical report, Defence Research & Development, Canada, Human System Integration (2007)

    Google Scholar 

  6. Ceriani, M., Bottoni, P.: SparqlBlocks: using blocks to design structured linked data queries. J. Vis. Lang. Sentient Syst. 3, 1–21 (2017)

    CrossRef  Google Scholar 

  7. Cooper, G.E., Harper, R.P.: The use of pilot ratings in the evaluation of aircraft handling qualities. Technical report AD689722, 567, Advisory Group for Aerospace Research & Development (1969)

    Google Scholar 

  8. Crotti Junior, A., Debruyne, C., Brennan, R., O’Sullivan, D.: An evaluation of uplift mapping languages. Int. J. Web Inf. Syst. 13(4), 405–424 (2017). https://doi.org/10.1108/IJWIS-04-2017-0036

    CrossRef  Google Scholar 

  9. Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF Mapping Language (2012). https://www.w3.org/TR/r2rml/

  10. Debruyne, C., O’Sullivan, D.: R2RML-F: towards sharing and executing domain logic in R2RML mappings. In: Workshop on Linked Data on the Web (LDOW 2016)

    Google Scholar 

  11. Edwards, A., Kelly, D., Azzopardi, L.: The impact of query interface design on stress, workload and performance. In: Hanbury, A., Kazai, G., Rauber, A., Fuhr, N. (eds.) ECIR 2015. LNCS, vol. 9022, pp. 691–702. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16354-3_76

    CrossRef  Google Scholar 

  12. Euzenat, J., Shvaiko, P.: Ontology Matching, vol. 18. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-49612-0

    CrossRef  MATH  Google Scholar 

  13. Fan, J., Smith, A.P.: The impact of workload and fatigue on performance. In: Longo, L., Leva, M. (eds.) H-WORKLOAD 2017. CCIS, vol. 726, pp. 90–105. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61061-0_6

    CrossRef  Google Scholar 

  14. Fu, B., Noy, N.F., Storey, M.-A.: Indented tree or graph? A usability study of ontology visualization techniques in the context of class mapping evaluation. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 117–134. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41335-3_8

    CrossRef  Google Scholar 

  15. Guastello, S.J., Marra, D.E., Correro, A.N., Michels, M., Schimmel, H.: Elasticity and rigidity constructs and ratings of subjective workload for individuals and groups. In: Longo, L., Leva, M. (eds.) H-WORKLOAD 2017. CCIS, vol. 726, pp. 51–76. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61061-0_4

    CrossRef  Google Scholar 

  16. Hart, S.G.: Nasa-task load index (NASA-TLX); 20 years later. In: Human Factors and Ergonomics Society Annual Meeting, vol. 50. Sage Journals (2006). https://doi.org/10.1177/154193120605000909

    CrossRef  Google Scholar 

  17. Hoefler, P., Granitzer, M., Veas, E.E., Seifert, C.: Linked data query wizard: a novel interface for accessing SPARQL endpoints. In: Workshop on Linked Data on the Web (LDOW 2014) (2014)

    Google Scholar 

  18. Junior, A.C., Debruyne, C., O’Sullivan, D.: Using a block metaphor for representing R2RML mappings. In: Proceedings of the 3rd International Workshop on Visualization and Interaction for Ontologies and Linked Data (VOILA@ISWC 2017) (2017)

    Google Scholar 

  19. Junior, A.C., Debruyne, C., O’Sullivan, D.: Juma uplift: using a block metaphor for representing uplift mappings. In: 12th IEEE International Conference on Semantic Computing (ICSC 2018). https://doi.org/10.1109/ICSC.2018.00037

  20. Knoblock, C.A., et al.: Semi-automatically mapping structured sources into the semantic web. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 375–390. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30284-8_32

    CrossRef  Google Scholar 

  21. Lefrançois, M., Zimmermann, A., Bakerally, N.: A SPARQL extension for generating RDF from heterogeneous formats. In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10249, pp. 35–50. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58068-5_3

    CrossRef  Google Scholar 

  22. Longo, L.: A defeasible reasoning framework for human mental workload representation and assessment. Behav. Inf. Technol. 34(8), 758–786 (2015). https://doi.org/10.1080/0144929X.2015.1015166

    CrossRef  Google Scholar 

  23. Longo, L., Dondio, P.: On the relationship between perception of usability and subjective mental workload of web interfaces. In: IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, WI-IAT 2015 (2015). https://doi.org/10.1109/WI-IAT.2015.157

  24. Longo, L.: Designing medical interactive systems via assessment of human mental workload. In: 28th IEEE International Symposium on Computer-Based Medical Systems, CBMS 2015 (2015). https://doi.org/10.1109/CBMS.2015.67

  25. Longo, L.: Formalising human mental workload as non-monotonic concept for adaptive and personalised web-design. In: Masthoff, J., Mobasher, B., Desmarais, M.C., Nkambou, R. (eds.) UMAP 2012. LNCS, vol. 7379, pp. 369–373. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31454-4_38

    CrossRef  Google Scholar 

  26. Longo, L.: Human-computer interaction and human mental workload: assessing cognitive engagement in the world wide web. In: Campos, P., Graham, N., Jorge, J., Nunes, N., Palanque, P., Winckler, M. (eds.) INTERACT 2011. LNCS, vol. 6949, pp. 402–405. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23768-3_43

    CrossRef  Google Scholar 

  27. Longo, L.: Mental workload in medicine: foundations, applications, open problems, challenges and future perspectives. In: 29th IEEE International Symposium on Computer-Based Medical Systems, CBMS 2016, (2016). https://doi.org/10.1109/CBMS.2016.36

  28. Longo, L.: Subjective usability, mental workload assessments and their impact on objective human performance. In: Bernhaupt, R., Dalvi, G., Joshi, A., Balkrishan, D.K., O’Neill, J., Winckler, M. (eds.) INTERACT 2017. LNCS, vol. 10514, pp. 202–223. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67684-5_13

    CrossRef  Google Scholar 

  29. Moustafa, K., Luz, S., Longo, L.: Assessment of mental workload: a comparison of machine learning methods and subjective assessment techniques. In: Longo, L., Leva, M.C. (eds.) H-WORKLOAD 2017. CCIS, vol. 726, pp. 30–50. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61061-0_3

    CrossRef  Google Scholar 

  30. Nunnally, J.C.: Psychometric Theory, 2nd edn. McGraw-Hill, New York (1978)

    Google Scholar 

  31. Pinkel, C., Binnig, C., Haase, P., Martin, C., Sengupta, K., Trame, J.: How to best find a partner? An evaluation of editing approaches to construct R2RML mappings. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 675–690. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07443-6_45

    CrossRef  Google Scholar 

  32. Priyatna, F., Corcho, O., Sequeda, J.: Formalisation and experiences of R2RML-based SPARQL to SQL query translation using morph. In: 23rd International World Wide Web Conference, WWW 2014, Seoul, Republic of Korea, pp. 479–490 (2014). https://doi.org/10.1145/2566486.2567981

  33. Reid, G.B., Nygren, T.E.: The subjective workload assessment technique: a scaling procedure for measuring mental workload. In: Hancock, P.A., Meshkati, N. (eds.) Human Mental Workload, Advances in Psychology, vol. 52, chap. 8, pp. 185–218, North-Holland (1988). https://doi.org/10.1016/S0166-4115(08)62387-0

    Google Scholar 

  34. Rizzo, L., Dondio, P., Delany, S.J., Longo, L.: Modeling mental workload via rule-based expert system: a comparison with NASA-TLX and workload profile. In: Iliadis, L., Maglogiannis, I. (eds.) AIAI 2016. IAICT, vol. 475, pp. 215–229. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44944-9_19

    CrossRef  Google Scholar 

  35. Rizzo, L., Longo, L.: Representing and inferring mental workload via defeasible reasoning: a comparison with the NASA task load index and the workload profile. In: Proceedings of the 1st Workshop on Advances in Argumentation in Artificial Intelligence Co-located with XVI International Conference of the Italian Association for Artificial Intelligence (AI*IA 2017) (2017)

    Google Scholar 

  36. Rubio, S., Diaz, E., Martin, J., Puente, J.M.: Evaluation of subjective mental workload: a comparison of swat, NASA-TLX, and workload profile methods. Appl. Psychol. 53(1), 61–86 (2004). https://doi.org/10.1111/j.1464-0597.2004.00161.x

    CrossRef  Google Scholar 

  37. Schmutz, P., Heinz, S., Metrailler, Y., Opwis, K.: Cognitive load in ecommerce applications: measurement and effects on user satisfaction. Adv. Hum.-Comput. Interact. (2009). https://doi.org/10.1155/2009/121494

    CrossRef  Google Scholar 

  38. Sicilia, Á., Nemirovski, G., Nolle, A.: Map-on: a web-based editor for visual ontology mapping. Semant. Web J. 8(6), 969–980 (2017). https://doi.org/10.3233/SW-160246

    CrossRef  Google Scholar 

  39. Smith, A.P., Smith, H.N.: Workload, fatigue and performance in the rail industry. In: Longo, L., Leva, M.C. (eds.) H-WORKLOAD 2017. CCIS, vol. 726, pp. 251–263. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61061-0_17

    CrossRef  Google Scholar 

  40. Stadler, C., Unbehauen, J., Westphal, P., Sherif, M.A., Lehmann, J.: Simplified RDB2RDF mapping. In: Workshop on Linked Data on the Web (LDOW 2015) (2015)

    Google Scholar 

  41. Tong, S., Helman, S., Balfe, N., Fowler, C., Delmonte, E., Hutchins, R.: Workload differences between on-road and off-road manoeuvres for motorcyclists. In: Longo, L., Leva, M.C. (eds.) H-WORKLOAD 2017. CCIS, vol. 726, pp. 239–250. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61061-0_16

    CrossRef  Google Scholar 

  42. Tsang, P.S., Velazquez, V.L.: Diagnosticity and multidimensional subjective workload ratings. Ergonomics 39(3), 358–381 (1996). https://doi.org/10.1080/00140139608964470

    CrossRef  Google Scholar 

  43. Tsang, P.S.: Mental workload. In: Karwowski, W. (ed.) International Encyclopedia of Ergonomics and Human Factors (2nd ed.), vol. 1, chap. 166. Taylor & Francis (2006)

    Google Scholar 

  44. Vidulich, M.A., Ward Frederic, G.F., Schueren, J.: Using the subjective workload dominance (sword) technique for projective workload assessment. Hum. Factors Soc. 33(6), 677–691 (1991). https://doi.org/10.1177/001872089103300605

    CrossRef  Google Scholar 

  45. Wickens, C.D., Hollands, J.G.: Engineering Psychology and Human Performance, 3rd edn. Prentice Hall, Upper Saddle River (1999)

    Google Scholar 

  46. Wickens, C.D.: Multiple resources and mental workload. Hum. Factors 50(2), 449–454 (2008). https://doi.org/10.1518/001872008X288394

    CrossRef  Google Scholar 

  47. Zijlstra, F.R.H.: Efficiency in work behaviour. Doctoral thesis, Delft University, The Netherlands (1993)

    Google Scholar 

Download references

Acknowledgements

This paper was supported by CNPQ, National Counsel of Technological and Scientific Development – Brazil and by the Science Foundation Ireland (Grant 13/RC/2106) as part of the ADAPT Centre for Digital Content Technology (http://www.adaptcentre.ie/) at Trinity College Dublin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ademar Crotti Junior .

Editor information

Editors and Affiliations

Appendix A: MWL Questionnaires

Appendix A: MWL Questionnaires

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Junior, A.C., Debruyne, C., Longo, L., O’Sullivan, D. (2019). On the Mental Workload Assessment of Uplift Mapping Representations in Linked Data. In: Longo, L., Leva, M. (eds) Human Mental Workload: Models and Applications. H-WORKLOAD 2018. Communications in Computer and Information Science, vol 1012. Springer, Cham. https://doi.org/10.1007/978-3-030-14273-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14273-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14272-8

  • Online ISBN: 978-3-030-14273-5

  • eBook Packages: Computer ScienceComputer Science (R0)