Andreev, R.: Stability of sparse space-time finite element discretizations of linear parabolic evolution equations. IMA J. Numer. Anal. 33(1), 242–260 (2013)
MathSciNet
CrossRef
Google Scholar
Aziz, A.K., Monk, P.: Continuous finite elements in space and time for the heat equation. Math. Comput. 52(186), 255–274 (1989)
MathSciNet
CrossRef
Google Scholar
Bales, L., Lasiecka, I.: Continuous finite elements in space and time for the nonhomogeneous wave equation. Comput. Math. Appl. 27(3), 91–102 (1994)
MathSciNet
CrossRef
Google Scholar
Bangerth, W., Geiger, M., Rannacher, R.: Adaptive Galerkin finite element methods for the wave equation. Comput. Methods Appl. Math. 10(1), 3–48 (2010)
MathSciNet
CrossRef
Google Scholar
Cohen, G.C.: Higher-Order Numerical Methods for Transient Wave Equations. Scientific Computation. Springer, Berlin (2002)
Google Scholar
Cohen, G.C., Pernet, S.: Finite Element and Discontinuous Galerkin Methods for Transient Wave Equations. Scientific Computation. Springer, Dordrecht (2017)
Google Scholar
Dörfler, W., Findeisen, S., Wieners, C.: Space-time discontinuous Galerkin discretizations for linear first-order hyperbolic evolution systems. Comput. Methods Appl. Math. 16(3), 409–428 (2016)
MathSciNet
CrossRef
Google Scholar
French, D.A., Peterson, T.E.: A continuous space-time finite element method for the wave equation. Math. Comput. 65(214), 491–506 (1996)
MathSciNet
CrossRef
Google Scholar
Ladyzhenskaya, O.A.: The Boundary Value Problems of Mathematical Physics. Applied Mathematical Sciences, vol. 49. Springer, New York (1985)
Google Scholar
Lions, J.-L., Magenes, E.: Problèmes aux limites non homogènes et applications. Travaux et Recherches Mathématiques, vol. 1, no. 17 Dunod, Paris (1968)
Google Scholar
Lions, J.-L., Magenes, E.: Problèmes aux limites non homogènes et applications. Travaux et Recherches Mathématiques, vol. 2, no. 18 Dunod, Paris (1968)
Google Scholar
Mollet, C.: Stability of Petrov-Galerkin discretizations: application to the space-time weak formulation for parabolic evolution problems. Comput. Methods Appl. Math. 14(2), 231–255 (2014)
MathSciNet
CrossRef
Google Scholar
Neumüller, M.: Space-time methods: fast solvers and applications. Ph.D. Thesis, TU Graz (2013)
Google Scholar
Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, vol. 44. Springer, New York (1983)
Google Scholar
Peterseim, D., Schedensack, M.: Relaxing the CFL condition for the wave equation on adaptive meshes. J. Sci. Comput. 72, 1196–1213 (2017)
MathSciNet
CrossRef
Google Scholar
Schwab, C., Stevenson, R.: Space-time adaptive wavelet methods for parabolic evolution problems. Math. Comput. 78(267), 1293–1318 (2009)
MathSciNet
CrossRef
Google Scholar
Steinbach, O.: Space-time finite element methods for parabolic problems. Comput. Methods Appl. Math. 15(4), 551–566 (2015)
MathSciNet
MATH
Google Scholar
Steinbach, O., Zank, M.: Coercive space–time finite element methods for initial boundary value problems (in review)
Google Scholar
Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer Series in Computational Mathematics, vol. 25, 2nd edn. Springer, Berlin (2006)
Google Scholar
Urban, K., Patera, A.T.: An improved error bound for reduced basis approximation of linear parabolic problems. Math. Comput. 83(288), 1599–1615 (2014)
MathSciNet
CrossRef
Google Scholar
Wloka, J.: Partielle Differentialgleichungen. B. G. Teubner, Stuttgart (1982)
Google Scholar
Zeidler, E.: Nonlinear Functional Analysis and Its Applications. II/A. Springer, New York (1990)
Google Scholar
Zlotnik, A.A.: Convergence rate estimates of finite-element methods for second-order hyperbolic equations. In: Numerical Methods and Applications, pp. 155–220. CRC, Boca Raton (1994)
Google Scholar