Skip to main content

A Space–Time Finite Element Method for the Linear Bidomain Equations

  • 738 Accesses

Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE,volume 128)

Abstract

In this work, we study a Galerkin–Petrov space–time finite element method for a linear system of parabolic–elliptic equations with in general anisotropic conductivity matrices , which may be considered as a simplified version of the nonlinear bidomain equations . The discretization is based on a stable space–time variational formulation employing continuous and piecewise linear finite elements in both spatial and temporal directions simultaneously. We show stability of the space–time formulation on both the continuous and discrete level for such a coupled problem under a rather general condition on the conductivity matrices. We further discuss the construction of a monolithic algebraic multigrid (AMG) method for solving the coupled linear system of algebraic equations globally. Numerical experiments are performed to demonstrate the convergence of the space–time finite element approximations, and the performance of the AMG method with respect to the mesh discretization parameter. Finally, we apply the space–time finite element method to the nonlinear bidomain equations in order to show the applicability of the proposed approach.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-14244-5_16
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-14244-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   149.99
Price excludes VAT (USA)

References

  1. Brandt, A., McCormick, S.F., Ruge, J.W.: Algebraic multigrid (AMG) for sparse matrix equations. In: Evans, D.J. (ed.) Sparsity and Its Applications, pp. 257–284. Cambridge University Press, Cambridge (1984)

    Google Scholar 

  2. Briggs, W., Henson, V., McCormick, S.: A Multigrid Tutorial, 2nd edn. SIAM, Philadelphia (2000)

    CrossRef  Google Scholar 

  3. Charawi, L.A.: Isogeometric overlapping Schwarz preconditioners for the bidomain reaction–diffusion system. Comput. Methods Appl. Mech. Eng. 319, 472–490 (2017)

    MathSciNet  CrossRef  Google Scholar 

  4. Chen, H., Li, X., Wang, Y.: A splitting preconditioner for a block two-by-two linear system with applications to the bidomain equations. J. Comput. Appl. Math. 321, 487–498 (2017)

    MathSciNet  CrossRef  Google Scholar 

  5. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39), 4135–4195 (2005)

    MathSciNet  CrossRef  Google Scholar 

  6. Karabelas, E.: Space–time discontinuous Galerkin methods for cardiac electromechanics. PhD thesis, Technische Universität Graz (2015)

    Google Scholar 

  7. Karabelas, E., Steinbach, O.: Space–time DG methods for the coupled electro–mechanical activation of the human heart. Proc. Appl. Math. Mech. 14(1), 839–840 (2014)

    CrossRef  Google Scholar 

  8. Kickinger, F.: Algebraic multigrid for discrete elliptic second–order problems. In: Hackbush, W. (ed.) Multigrid Methods V. Proceedings of the 5th European Multigrid Conference. Lecture Notes in Computational Sciences and Engineering, vol. 3, pp. 157–172. Springer, Berlin (1998)

    Google Scholar 

  9. Langer, U., Yang, H.: Robust and efficient monolithic fluid–structure–interaction solvers. Int. J. Numer. Methods Eng. 108(4), 303–325 (2016)

    MathSciNet  CrossRef  Google Scholar 

  10. Linge, S., Sundnes, J., Hanslien, M., Lines, G.T., Tveito, A.: Numerical solution of the bidomain equations. Philos. Trans. R. Soc. A 367(1895), 1931–1950 (2009)

    MathSciNet  CrossRef  Google Scholar 

  11. Neumüller, M.: Space–time methods: fast solvers and applications. PhD thesis, Technische Universität Graz (2013)

    Google Scholar 

  12. Neumüller, M., Steinbach, O.: Refinement of flexible space–time finite element meshes and discontinuous Galerkin methods. Comput. Vis. Sci. 14, 189–205 (2011)

    MathSciNet  CrossRef  Google Scholar 

  13. Pathmanathan, P., Bernabeu, M.O., Bordas, R., Cooper, J., Garny, A., Pitt-Francis, J.M., Whiteley, J.P., Gavaghan, D.J.: A numerical guide to the solution of the bidomain equations of cardiac electrophysiology. Prog. Biophys Mol. Biol. 102(2), 136–155 (2010)

    CrossRef  Google Scholar 

  14. Pavarino, L.F., Scacchi, S.: Multilevel additive Schwarz preconditioners for the bidomain reaction–diffusion system. SIAM J. Sci. Comput. 31(1), 420–443 (2008)

    MathSciNet  CrossRef  Google Scholar 

  15. Pavarino, L.F., Scacchi, S.: Parallel multilevel Schwarz and block preconditioners for the bidomain parabolic–parabolic and parabolic–elliptic formulations. SIAM J. Sci. Comput. 33(4), 1897–1919 (2011)

    MathSciNet  CrossRef  Google Scholar 

  16. Pennacchio, M., Simoncini, V.: Efficient algebraic solution of reaction–diffusion systems for the cardiac excitation process. J. Comput. Appl. Math. 145(1), 49–70 (2002)

    MathSciNet  CrossRef  Google Scholar 

  17. Pennacchio, M., Simoncini, V.: Algebraic multigrid preconditioners for the bidomain reaction–diffusion system. Appl. Numer. Math. 59(12), 3033–3050 (2009)

    MathSciNet  CrossRef  Google Scholar 

  18. Pennacchio, M., Simoncini, V.: Non-symmetric algebraic multigrid preconditioners for the bidomain reaction–diffusion system. In: Kreiss, G.G., Lötstedt, P., Målqvist, A., Neytcheva, M. (eds.) Numerical Mathematics and Advanced Applications 2009, pp. 729–736. Springer, Berlin (2010)

    CrossRef  Google Scholar 

  19. Plank, G., Liebmann, M., dos Santos, R.W., Vigmond, E.J., Haase, G.: Algebraic multigrid preconditioner for the cardiac bidomain model. IEEE Trans. Biomed. Eng. 54(4), 585–596 (2007)

    CrossRef  Google Scholar 

  20. Ruge, J.W., Stüben, K.: Algebraic multigrid (AMG). In: McCormick, S.F. (ed.) Multigrid Methods, pp. 73–130. SIAM, Philadelphia (1987)

    CrossRef  Google Scholar 

  21. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)

    CrossRef  Google Scholar 

  22. Southern, J.A., Plank, G., Vigmond, E.J., Whiteley, J.P.: Solving the coupled system improves computational efficiency of the bidomain equations. IEEE Trans. Biomed. Eng. 56(10), 2404–2412 (2009)

    CrossRef  Google Scholar 

  23. Steinbach, O.: Space–time finite element methods for parabolic problems. Comput. Methods Appl. Math. 15, 551–566 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Steinbach, O., Yang, H.: Comparison of algebraic multigrid methods for an adaptive space–time finite-element discretization of the heat equation in 3D and 4D. Numer. Linear Algebra Appl. 25, e2143 (2018)

    MathSciNet  CrossRef  Google Scholar 

  25. Sundnes, J., Lines, G.T., Cai, X., Nielsen, B.F., Mardal, K.-A., Tveito, A.: Computing the Electrical Activity of the Heart. Springer, Berlin (2006)

    MATH  Google Scholar 

  26. Vigmond, E.J., dos Santos, R.W., Prassl, A.J., Deo, M., Plank, G.: Solvers for the cardiac bidomain equations. Prog. Biophys. Mol. Biol. 96(1–3), 3–18 (2008)

    CrossRef  Google Scholar 

  27. Zampini, S.: Balancing Neumann–Neumann methods for the cardiac bidomain model. Numer. Math. 123(2), 363–393 (2013)

    MathSciNet  CrossRef  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Austrian Science Fund (FWF) under the Grant SFB Mathematical Optimization and Applications in Biomedical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Steinbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Steinbach, O., Yang, H. (2019). A Space–Time Finite Element Method for the Linear Bidomain Equations. In: Apel, T., Langer, U., Meyer, A., Steinbach, O. (eds) Advanced Finite Element Methods with Applications. FEM 2017. Lecture Notes in Computational Science and Engineering, vol 128. Springer, Cham. https://doi.org/10.1007/978-3-030-14244-5_16

Download citation