Alpers J, Hansen C, Ringe K et al (2017) Ct-based navigation guidance for liver tumor ablation. In: Proceedings of the VCBM
Google Scholar
Borgo R, Kehrer J, Chung DH et al (2013) Glyph-based visualization: foundations, design guidelines, techniques and applications. In: Eurographics (STARs), pp 39–63
Google Scholar
Bruckner S, Gröller E (2007) Enhancing depth-perception with flexible volumetric halos. IEEE Trans Vis Comput Graph 13(6):1344–1351
CrossRef
Google Scholar
Gerig G, Koller T, Székely G et al (1993) Symbolic description of 3-d structures applied to cerebral vessel tree obtained from mr angiography volume data. In: Biennial international conference on information processing in medical imaging, Springer, pp 94–111
Google Scholar
Glueck M, Crane K, Anderson S et al (2009) Multiscale 3d reference visualization. In: Proceedings of the 2009 symposium on interactive 3D graphics and games, ACM, pp 225–232
Google Scholar
Hahn HK, Preim B, Selle D et al (2001) Visualization and interaction techniques for the exploration of vascular structures. In: Visualization, 2001. VIS’01. Proceedings, IEEE, pp 395–578
Google Scholar
Hansen C, Zidowitz S, Preim B et al (2014) Impact of model-based risk analysis for liver surgery planning. Int J Comput Assist Radiol Surg 9(3):473–480
CAS
CrossRef
Google Scholar
Healey C, Enns J (2012) Attention and visual memory in visualization and computer graphics. IEEE Trans Vis Comput Graph 18(7):1170–1188
CrossRef
Google Scholar
Hernández-Hoyos M, Anwander A, Orkisz M et al (2000) A deformable vessel model with single point initialization for segmentation, quantification, and visualization of blood vessels in 3d mra. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 735–745
Google Scholar
Hubona GS, Wheeler PN, Shirah GW et al (1999) The relative contributions of stereo, lighting, and background scenes in promoting 3D depth visualization. ACM Trans Comput Hum Interact 6:214–242
CrossRef
Google Scholar
Kersten M, Stewart J, Troje N et al (2006) Enhancing depth perception in translucent volumes. IEEE Trans Vis Comput Graph 12(5):1117–1124
CrossRef
Google Scholar
Kersten-Oertel M, Chen SJ, Collins DL (2014) An evaluation of depth enhancing perceptual cues for vascular volume visualization in neurosurgery. IEEE Trans Vis Comput Graph 20(3):391–403
CrossRef
Google Scholar
Kreiser J, Hermosilla P, Ropinski T (2018) Void space surfaces to convey depth in vessel visualizations. ArXiv e-prints 1806.07729
Google Scholar
Lawonn K, Luz M, Preim B et al (2015) Illustrative visualization of vascular models for static 2d representations. In: Medical Image Computing and Computer- Assisted Intervention (MICCAI), pp 399–406
Google Scholar
Lawonn K, Luz M, Hansen C (2017) Improving spatial perception of vascular models using supporting anchors and illustrative visualization. Comput Graph 63:37–49
CrossRef
Google Scholar
Lichtenberg N, Hansen C, Lawonn K (2017) Concentric circle glyphs for enhanced depth-judgment in vascular models. In: Proceedings of the VCBM
Google Scholar
Meuschke M, SMIT N, Lichtenberg N et al (2018) Automatic generation of web-based user studies to evaluate depth perception in vascular surface visualizations. In: Proceedings of the VCBM
Google Scholar
Preim B, Baer A, Cunningham D et al (2016) A survey of perceptually motivated 3D visualization of medical image data. Comput Graph Forum 35(3):501–525
CrossRef
Google Scholar
Preim B, Ropinski T, Isenberg P (2018) A critical analysis of the evaluation practice in medical visualization. In: Eurographics workshop on visual computing for biology and medicine. The Eurographics Association
Google Scholar
Ritter F, Hansen C, Dicken V et al (2006) Real-time illustration of vascular structures. IEEE Transact Vis Comput Graph 12(5):877–884
CrossRef
Google Scholar
Rodrigues JF, Traina AJ, de Oliveira MCF et al (2006) Reviewing data visualization: an analytical taxonomical study. In: Tenth international conference on information visualisation (IV’06), IEEE, pp 713–720
Google Scholar
Ropinski T, Steinicke F, Hinrichs K (2006) Visually supporting depth perception in angiography imaging. In: Smart graphics, lecture notes in computer science, vol 4073. Springer, Berlin/Heidelberg, pp 93–104
Google Scholar
Ropinski T, Oeltze S, Preim B (2011) Survey of glyph-based visualization techniques for spatial multivariate medical data. Comput Graph 35(2):392–401
CrossRef
Google Scholar
Saalfeld P, Luz M, Berg P et al (2018) Guidelines for quantitative evaluation of medical visualizations on the example of 3d aneurysm surface comparisons. In: Computer graphics forum, Wiley online library, vol 37, pp 226–238
CrossRef
Google Scholar
Shepard D (1968) A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 23rd ACM national conference, ACM, pp 517–524
Google Scholar
Steenblik RA (1987) The chromostereoscopic process: a novel single image stereoscopic process. In: Proceedings of the SPIE, vol 0761, pp 27–34
Google Scholar
Swan JE, Singh G, Ellis SR (2015) Matching and reaching depth judgments with real and augmented reality targets. IEEE Trans Vis Comput Graph 21(11):1289–1298
CrossRef
Google Scholar