Abstract
Electronic-waste was the main waste stream raising concern to the researchers globally. Improper recycling and disposal techniques resulted in solemn effects on the atmosphere and public well-being. This chapter explains the systematic methods used for management of Electronic-waste. Electronic-waste managing would be an ideal start-up business platform toward energy production and metal recovery. The recycling pathways are designed by considering the current industrial reality and design strategies. Chemical recycling is a compilation of pyrolysis, catalytic cracking/upgrading, gasification, and chemolysis methods. Pyrolyzing of Electronic-waste prior to catalytic cracking method yielded high-quality oil. This oil can be further upgraded into clean fuels. Integrated process (pyrolysis and catalytic upgrading) results in considerable financial and ecological benefits during processing Electronic-waste into clean fuels.
Keywords
- Electronic-waste
- chemical recycling
- Clean fuel
- Energy
- Valuable chemical
- Plastics
- Hydrothermal
- Gasification
- Combustion
- Environment
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Abduli MA, Naghib A, Yonesi M, Akbari A (2011) Life cycle assessment (LCA) of solid waste management strategies in Tehran: landfill and composting plus landfill. Environ Monit Assess 178:487–498
Abnisa F, Daud WMAW (2014) A review on co-pyrolysis of biomass: an optional technique to obtain high-grade pyrolysis oil. Energy Convers Manag 87:71–85
Balaz P (2008) Mechanochemistry in nanoscience and minerals engineering. Springer, Berlin/Heidelberg
Balaz P, Achimovieova M, Balaz M, Billik P, Cherkezova-Zheleva Z, Criado JM et al (2013) Hallmarks of mechanochemistry: from nanoparticles to technology. Chem Soc Rev 42:7571
Balde C, Wang F, Kuehr R, Huisman J (2015) The global electronic waste monitor. United Nations University, IAS–SCYCLE, Bonn
Bhaskar T, Matsui T, Kaneko J, Uddin MA, Muto A, Sakata Y (2002) Novel calcium based sorbent (Ca-C) for the dehalogenation (Br, Cl) process during halogenated mixed plastic (PP/PE/PS/PVC and HIPS-Br) pyrolysis. Green Chem 4:372–375
Bian J, Bai H, Li W, Yin J, Xu H (2016) Comparative environmental life cycle assessment of waste mobile phone recycling in China. J Clean Prod 131:209–218
British Plastics Federation (2008) Oil consumption: what happens to plastics when the oil runs out and when will it run out. Available from: http://www.bpf.co.uk/press/Oil_Consumption.aspx
Buratti C, Barbanera M, Testarmata F, Fantozzi F (2015) Life cycle assessment of organic waste management strategies: an Italian case study. J Clean Prod 89:125–136
De-Souza RG, Climaco JCN, Sant’Anna AP, Rocha TB, do Valle RDB, Quelhas OLG (2016) Sustainability assessment and prioritisation of electronic waste management options in Brazil. Waste Manag 57:46–56
Erses-Yay AS (2015) Application of life cycle assessment (LCA) for municipal solid waste management: a case study of Sakarya. J Clean Prod 94:284–293
Freegard K, Tan G, Coggins-Wamtech C, Environmental DFD, Alger M, Cracknell P et al (2006) Develop a process to separate brominated flame retardants from WASTE ELECTRICAL AND ELECTRONIC EQUIPMENTS polymers. (Final Report). The Waste & Resources Action Programme, London
Fujimori T, Takigami H, Agusa T, Eguchi A, Bekki K, Yoshida A, Terazono A, Ballesteros FC (2012) Impact of metals in surface matrices from formal and informal electronic-waste recycling around Metro Manila, the Philippines, and intra-Asian comparison. J Hazard Mater 221:139–146
Grause G, Karakita D, Ishibashi J, Kameda T, Bhaskar T, Yoshioka T (2011) TGMS investigation of brominated products from the degradation of brominated flame retardants in high-impact polystyrene. Chemosphere 85:368–373
Grause G, Fonseca JD, Tanaka H, Bhaskar T, Kameda T, Yoshioka T (2015) A novel process for the removal of bromine from styrene polymers containing brominated flame retardant. Polym Degrad Stab 112:86–93
Guo J, Guo J, Xu ZM (2009) Recycling of non-metallic fractions from waste printed circuit boards: a review. J Hazard Mater 168:567–590
Guo X, Xiang D, Duan G, Mou P (2010) A review of mechanochemistry applications in waste management. Waste Manag 30:4–10
Hall WJ, Williams PT (2006) Pyrolysis of brominated feedstock plastic in a fluidised bed reactor. J Anal Appl Pyrolysis 77:75–82
Hansen LA, Nielsen HP, Frandsen FJ, Dam-Johansen K, Hørlyck S, Karlsson A (2000) Influence of deposit formation on corrosion at a straw-fired boiler. Fuel Process Technol 64:189–209
Hong J, Shi W, Wang Y, Chen W, Li X (2015) Life cycle assessment of electronic waste treatment. Waste Manag 38:357–365
Hossain M, Al-Hamadani S, Rahman R (2015) Electronic waste: a challenge for sustainable development. J Health Pollut 5:550–555
Huang Q, Liu W, Peng P, Huang W (2013) Reductive debromination of tetra bromobisphenol a by Pd/Fe bimetallic catalysts. Chemosphere 92:1321–1327
Huisman J, Magalini F, Kuehr R, Maurer C, Ogilvie S, Poll J et al (2008) Review of directive 2002/96 on waste electrical and electronic equipment (WASTE ELECTRICAL AND ELECTRONIC EQUIPMENTS). United Nations University, Bonn
Ikhlayel M (2017) Environmental impacts and benefits of state-of-the-art technologies for electronic waste management. Waste Manag 68:458–474
Ikhlayel M, Higano Y, Yabar H, Mizunoya T (2016) Introducing an integrated municipal solid waste management system: assessment in Jordan. J Sustain Dev 9:43
Jiang P, Harney M, Song Y, Chen B, Chen Q, Chen T, Lazarus G, Dubois LH, Korzenski MB (2012) Improving the end-of-life for electronic materials via sustainable recycling methods. Procedia Environ Sci 16:485–490
Jin Y, Tao L, Chi Y, Yan J (2011) Conversion of bromine during thermal decomposition of printed circuit boards at high temperature. J Hazard Mater 186:707–712
Jung SH, Kim SJ, Kim JS (2012) Thermal degradation of acrylonitrile–butadiene– styrene (ABS) containing flame retardants using a fluidized bed reactor: the effects of ca-based additives on halogen removal. Fuel Process Technol 96:265–270
Leung A, Cai ZW, Wong MH (2006) Environmental contamination from electronic waste recycling at Guiyu, Southeast China. J Mater Cycles Waste Manage 8:21–33
Li J, Zeng X, Chen M, Ogunseitan OA, Stevels A (2015) “Control-Alt-Delete”: rebooting solutions for the electronic waste problem. Environ Sci Technol 49:7095–7108
Lopez A, de Marco I, Caballero BM, Laresgoiti MF, Adrados A (2011) Dechlorination of fuels in pyrolysis of PVC containing plastic wastes. Fuel Process Technol 92:253–260
Lopez G, Ekiaga A, Amutio M, Bilbao J, Olazar M (2015) Effect of polyethylene co-feeding in the steam gasification of biomass in a conical spouted bed reactor. Fuel 153:393–401
McCann D, Wittmann A (2015) Solving the electronic waste problem (Step) green paper: E- waste Prevention, take-back system design and policy approaches. United Nations University/Step Initiative, Germany
Miskolczi N, Hall WJ, Angyal A, Bartha L, Williams PT (2008) Production of oil with low organobromine content from the pyrolysis of flame retarded HIPS and ABS plastics. J Anal Appl Pyrolsis 83:115–123
Nnorom IC, Osibanjo O (2008a) Overview of electronic waste (electronic waste) management practices and legislations, and their poor applications in the developing countries. Resour Conserv Recycl 52:843–858
Nnorom IC, Osibanjo O (2008b) Sound management of brominated flame retarded (BFR) plastics from electronic wastes: state of the art and options in Nigeria. Resour Conserv Recycl 52:1362–1372
Ongondo FO, Williams ID, Cherrett TJ (2011) How are WASTE ELECTRICAL AND ELECTRONIC EQUIPMENTS doing? A global review of the management of electrical and electronic wastes. Waste Manag 31:714–730
Perez-Belis V, Bovea M, Ibanez-Fores V (2015) An in-depth literature review of the waste electrical and electronic equipment context: trends and evolution. Waste Manag Res 33:3–29
Rahmani M, Nabizadeh R, Yaghmaeian K, Mahvi AH, Yunesian M (2014) Estimation of waste from computers and mobile phones in Iran. Resour Conserv Recycl 87:21–29
Seitz J (2014) Analysis of existing electronic waste practices in MENA countries. The regional solid waste exchange of information and expertise network in Mashreq and Maghreb Countries (SWEEP-Net)
SEPA (2011) Recycling and disposal of electronic waste: health hazards and environmental impacts. Naturvårdsverket, Stockholm
Shen Y, Zhao R, Wang J, Chen X, Ge X, Chen M (2016) Waste-to-energy: De-halogenation of plastic-containing wastes. Waste Manag 49:287–303
Shen Y, Chen X, Ge X, Chen M (2018) Chemical pyrolysis of electronic waste plastics: char characterization. J Environ Manag 214:94–103
Shibasaki Y, Kamimori T, Kadokawa J, Hatano B, Tagaya H (2004) Decomposition reactions of plastic model compounds in sub and supercritical water. Polym Degrad Stab 83:481–485
Song Q, Li J (2015) A review on human health consequences of metals exposure to electronic waste in China. Environ Pollut 196:450–461
Song QB, Wang ZS, Li JH (2013) Sustainability evaluation of electronic waste treatment based on emergy analysis and the LCA method: a case study of a trial project in Macau. Ecol Indic 30:138–147
Starnes WH (2012) How and to what extent are free radicals involved in the nonoxidative thermal dehydrochlorination of poly (vinyl chloride)? J Vinyl Addit Technol 18:71–75
Stevels A, Huisman J, Wang F, Li J, Li B, Duan H (2013) Take back and treatment of discarded electronics: a scientific update. Front Environ Sci Eng 7:475–482
Thanh NP, Matsui Y (2013) Assessment of potential impacts of municipal solid waste treatment alternatives by using life cycle approach: a case study in Vietnam. Environ Monit Assess 185:7993–8004
Vehlow J, Bergfeldt B, Hunsinger H, Seifert H, Mark FE (2003) Bromine in waste incineration: partitioning and influence on metal volatilisation. Environ Sci Pollut Res Int 10:329–334
Vilaplana F, Karlsson S (2008) Quality concepts for the improved use of recycled polymeric materials: a review. Macromol Mater Eng 293:274–297
Wang Y, Zhang FS (2012) Degradation of brominated flame retardant in computer housing plastic by supercritical fluids. J Hazard Mater 205–206:156–163
Widmer R, Oswald-Krapf H, Sinha-Khetriwal D, Schnellmann M, Boni H (2005) Global perspectives on electronic waste. Environ Impact Assess Rev 25:436–458
William JH, Paul TW (2007) Separation and recovery of materials from scrap printed circuit boards. Res Conserv Recycl 51:691–709
Wu C, Williams PT (2013) Advanced thermal treatment of wastes for fuels, chemicals and materials recovery. In: Hester RE, Harrison RM (eds) Waste as a resource. The Royal Society of Chemistry, Cambridge, pp 1–43
Wu H, Shen Y, Harada N, An Q, Yoshikawa K (2014) Production of pyrolysis oil with low bromine and antimony contents from plastic material containing brominated flame retardants and antimony trioxide. Energy Environ Res 4:105–118
Xue M, Kendall A, Xu Z, Schoenung JM (2015) Waste management of printed wiring boards: a life cycle assessment of the metals recycling chain from liberation through refining. Environ Sci Technol 49:940–947
Yan W, Hastings JT, Acharjee TC, Coronella CJ, Vásquez VR (2010) Mass and energy balances of wet torrefaction of lignocellulosic biomass. Energy Fuel 24:4738–4742
Yu J, Sun L, Ma C, Qiao Y, Yao H (2016) Thermal degradation of PVC: a review. Waste Manag 48:300–314
Zhang S, Yoshikawa K, Nakagome H, Kamo T (2013) Kinetics of the steam gasification of a phenolic circuit board in the presence of carbonates. Appl Energy 101:815–821
Zhuang Y, Ahn S, Seyfferth AL, Masue-Slowey Y, Fendorf S, Luthy RG (2011) Dehalogenation of polybrominated diphenyl ethers and polychlorinated biphenyl by bimetallic, impregnated, and nanoscale zerovalent iron. Environ Sci Technol 45:4896–4903
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Arun, J., Gopinath, K.P. (2020). Chemical Recycling of Electronic-Waste for Clean Fuel Production. In: Khan, A., Inamuddin, Asiri, A. (eds) E-waste Recycling and Management. Environmental Chemistry for a Sustainable World, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-030-14184-4_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-14184-4_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-14183-7
Online ISBN: 978-3-030-14184-4
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)