Interpreting Information in Smart Environments with Social Patterns

  • Rubén Fuentes-FernándezEmail author
  • Jorge J. Gómez-Sanz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11450)


Smart Environments (SEs) work in close interaction with their users. To perform properly, these systems need to process their information (both from sensing and to act) considering its meaning for people. For instance, when they manage workflows that represent users’ activities or consider the tradeoffs between alternative actions. Introducing social knowledge about the human context helps SEs to better interpret information, and thus people’ needs and actions. However, working with this knowledge faces several difficulties. Its level of abstraction is different from that directly related to system components. Moreover, it belongs to a background that is not frequent among engineers. In order to address these issues, this paper proposes the use of Social Context-Aware Assistants (SCAAs). These Multi-Agent Systems (MASs) manage explicitly social information using specifications conform to a domain-specific Modelling Language (ML). The ML aims at describing human aspects and their changes in a given context related to a SE. Social properties describe reusable knowledge using a template with these specifications and textual explanations. Working with the ML facilitates the semi-automated transformation of specifications to integrate social and other system information, derive new one, and check properties. Specific agents are responsible for managing information, and translating data from sensors to the ML, and from this to data for actuators. A case study on an alert system to monitor group activities, extended with social knowledge to interpret people’ behaviour, illustrates the approach.


Smart environment People’ behaviour Human environment Social knowledge Social property Semi-automated verification Multi-agent system Social Context-Aware Assistant 



This work has been done in the context of the mobility plan for the mobility of researchers “Subprograma de Movilidad del Programa Estatal de Promoción del Talento y su Empleabilidad, en el marco del Plan Estatal de Investigación Científica y Técnica y de Innovación” (grant PRX17/00613) supported by the Spanish Ministry for Education, Culture, and Sports, the projects “Collaborative Ambient Assisted Living Design (ColoSAAL)” (grant TIN2014-57028-R) supported by the Spanish Ministry for Economy and Competitiveness, MOSI-AGIL-CM (grant S2013/ICE-3019) supported by the Autonomous Region of Madrid and co-funded by EU Structural Funds FSE and FEDER, and the “Programa de Creación y Consolidación de Grupos de Investigación” (UCM-BSCH GR35/10-A).


  1. 1.
    Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 217–253. Springer, Boston, MA (2011). Scholar
  2. 2.
    Fernández-de Alba, J.M., Campillo, P., Fuentes-Fernández, R., Pavón, J.: Opportunistic control mechanisms for ambience intelligence worlds. Expert Syst. Appl. 41(4), 1875–1884 (2014). Scholar
  3. 3.
    Alfonso-Cendón, J., Fernández-de Alba, J.M., Fuentes-Fernández, R., Pavón, J.: Implementation of context-aware workflows with multi-agent systems. Neurocomputing 176, 91–97 (2016). Scholar
  4. 4.
    Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. Int. J. Ad Hoc Ubiquit. Comput. 2(4), 263–277 (2007). Scholar
  5. 5.
    Baur, T., et al.: Context-aware automated analysis and annotation of social human-agent interactions. ACM Trans. Interact. Intell. Syst. (TiiS) 5(2), 11:1–11:33 (2015). Scholar
  6. 6.
    Bettini, C., et al.: A survey of context modelling and reasoning techniques. Pervasive Mob. Comput. 6(2), 161–180 (2010). Scholar
  7. 7.
    Bikakis, A., Patkos, T., Antoniou, G., Plexousakis, D.: A survey of semantics-based approaches for context reasoning in ambient intelligence. In: Mühlhäuser, M., Ferscha, A., Aitenbichler, E. (eds.) AmI 2007. CCIS, vol. 11, pp. 14–23. Springer, Heidelberg (2008). Scholar
  8. 8.
    Cook, D.J., Crandall, A., Singla, G., Thomas, B.: Detection of social interaction in smart spaces. Cybern. Syst. Int. J. 41(2), 90–104 (2010). Scholar
  9. 9.
    Cook, D.J., Das, S.K.: How smart are our environments? An updated look at the state of the art. Pervasive Mob. Comput. 3(2), 53–73 (2007). Scholar
  10. 10.
    Fernández-De-Alba, J.M., Fuentes-Fernández, R., Pavón, J.: Architecture for management and fusion of context information. Inf. Fusion 21, 100–113 (2015). Scholar
  11. 11.
    Fernández-Isabel, A., Fuentes-Fernández, R.: Extending a generic traffic model to specific agent platform requirements. Comput. Sci. Inf. Syst. 14(1), 219–237 (2017). Scholar
  12. 12.
    Fernández-Isabel, A., Fuentes-Fernández, R.: An integrative modelling language for agent-based simulation of traffic. IEICE Trans. Inf. Syst. 99(2), 406–414 (2016)CrossRefGoogle Scholar
  13. 13.
    Fuentes-Fernández, R., Gómez-Sanz, J.J., Pavón, J.: Modelling culture through social activities. In: Dignum, V., Dignum, F. (eds.) Perspectives on Culture and Agent-based Simulations. SPS, vol. 3, pp. 49–68. Springer, Cham (2014). Scholar
  14. 14.
    Gomez-Sanz, J.J., Fuentes-Fernández, R.: Understanding agent-oriented software engineering methodologies. Knowl. Eng. Rev. 30(4), 375–393 (2015). Scholar
  15. 15.
    Guo, B., Zhang, D., Wang, Z., Yu, Z., Zhou, X.: Opportunistic IoT: exploring the harmonious interaction between human and the internet of things. J. Netw. Comput. Appl. 36(6), 1531–1539 (2013). Scholar
  16. 16.
    Hwang, G.J., Tsai, C.C., Yang, S.J.: Criteria, strategies and research issues of context-aware ubiquitous learning. J. Educ. Technol. Soc. 11(2), 81–91 (2008)Google Scholar
  17. 17.
    Kofod-Petersen, A., Cassens, J.: Using activity theory to model context awareness. In: Roth-Berghofer, T.R., Schulz, S., Leake, D.B. (eds.) MRC 2005. LNCS (LNAI), vol. 3946, pp. 1–17. Springer, Heidelberg (2006). Scholar
  18. 18.
    Leontiev, A.: Activity, Consciousness, and Personality. Prentice Hall, Upper Saddle River (1978)Google Scholar
  19. 19.
    Liang, G., Cao, J.: Social context-aware middleware: a survey. Pervasive Mob. Comput. 17, 207–219 (2015). Scholar
  20. 20.
    OMG: OMG Unified Modeling Language (OMG UML), Version 2.5.1. December 2017
  21. 21.
    Padovitz, A., Loke, S.W., Zaslavsky, A.: Towards a theory of context spaces. In: Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications Workshops, 2004, pp. 38–42. IEEE (2004).
  22. 22.
    Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Context aware computing for the internet of things: a survey. IEEE Commun. Surv. Tutor. 16(1), 414–454 (2014). Scholar
  23. 23.
    Rodríguez, N.D., Cuéllar, M.P., Lilius, J., Calvo-Flores, M.D.: A survey on ontologies for human behavior recognition. ACM Comput. Surv. (CSUR) 46(4), 43:1–43:33 (2014). Scholar
  24. 24.
    Sendra, S., Granell, E., Lloret, J., Rodrigues, J.J.: Smartcollaborative mobile system for taking care of disabled and elderlypeople. Mob. Netw. Appl. 19(3), 287–302 (2014). Scholar
  25. 25.
    Snidaro, L., García, J., Llinas, J.: Context-based information fusion: a survey and discussion. Inf. Fusion 25, 16–31 (2015). Scholar
  26. 26.
    Xavier, D., Crespo, B., Fuentes-Fernández, R.: A rule-based expert system for inferring functional annotation. Appl. Soft Comput. 35, 373–385 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rubén Fuentes-Fernández
    • 1
    Email author
  • Jorge J. Gómez-Sanz
    • 1
  1. 1.Research Group on Agent-Based, Social and Interdisciplinary Applications (GRASIA)Universidad Complutense de MadridMadridSpain

Personalised recommendations