Advertisement

Modelling Medical Information and Knowledge with OWL and Topic Maps

  • Martina HusákováEmail author
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 830)

Abstract

Majority of facts about autoimmune diseases are shattered in various web sources. It is difficult to provide fundamental facts about specific autoimmune disease without spending a lot of time. The paper investigates the OWL and the Topic Maps standard for building of an information and knowledge repository including autoimmune diseases. This repository should facilitate findability of facts about autoimmune diseases. The OWL and the Topic Maps is compared with the RDF and the RDFS model for answering question which approach is more suitable for development of the repository.

Keywords

Autoimmunity Navigation Semantics OWL Topic Maps RDF(S) 

Notes

Acknowledgements

Czech Science Foundation project 18-01246S is kindly acknowledged.

References

  1. 1.
    Delves, P.J., et al.: Roitt’s Essential Immunology, 12 edn. Wiley-Blackwell, 560p (2011). ISBN 978-1405196833Google Scholar
  2. 2.
    Husáková, M.: Conceptual Modelling in Computational Immunology, 1st edn. Tomáš Bruckner Publishing (Academic Series), Řepín, Živonín (2015)Google Scholar
  3. 3.
    Cimler, R., Husáková, M., Koláčková, M.: Exploration of autoimmune diseases using multi-agent systems. In: Nguyen, N., Iliadis, L., Manolopoulos, Y., Trawiński, B. (eds.) Computational Collective Intelligence. ICCCI 2016, LNCS Springer-Verlag, vol. 9876, pp. 282–291 (2016)Google Scholar
  4. 4.
    Husáková, M.: Representation of autoimmune diseases with RDFS. In: Nguyen, N., Pimenidis, E., Khan, Z., Trawiński, B. (eds.) Computational Collective Intelligence. ICCCI 2018. LNCS Springer-Verlag, vol. 11055, pp. 43–52 (2018)Google Scholar
  5. 5.
    Harvard Medical School. Medical Dictionary of Health Terms.: Retrieved 20 Apr 2018 from https://www.health.harvard.edu/a-through-c
  6. 6.
    eMedicineHealth.com. Online Medical Dictionary. Retrieved 20 Apr 2018 from https://www.emedicinehealth.com/medical-dictionary-definitions/article_em.htm
  7. 7.
    U. S. National Library of Medicine. MedlinePlus, Medical Encyclopedia. Retrieved 20 Apr 2018 from https://medlineplus.gov/encyclopedia.html
  8. 8.
    Lab Tests Online (AACC).: Retrieved 4 Sept 2018 from https://labtestsonline.org/conditions/autoimmune-diseases
  9. 9.
    Schriml, L.M., et al.: Disease ontology: a backbone for disease semantic integration. Nucl. Acids Res. 40(Database issue), D940–D946 (2012). http://doi.org/10.1093/nar/gkr972. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3245088/CrossRefGoogle Scholar
  10. 10.
    Malone, J., et al.: Modeling sample variables with an experimental factor ontology. Bioinformatics 26(8), 1112–1118 (2010). http://doi.org/10.1093/bioinformatics/btq099. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2853691/CrossRefGoogle Scholar
  11. 11.
    The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use.: Understanding MedDRA: The Medical Dictionary for Regulatory Activities (2013). Retrieved 10 Mar 2018 from https://www.meddra.org/sites/default/files/page/documents/meddra2013.pdf
  12. 12.
    World Health Organization.: ICD-10: International Statistical Classification of Diseases and Related Health Problems (10th rev.), 2 (2011). Retrieved 12 Mar 2018 from http://www.who.int/classifications/icd/ICD10Volume2_en_2010.pdf
  13. 13.
    Köhler, S., et al.: The human phenotype ontology project: linking molecular biology and disease through phenotype data. Nucl. Acids Res. 42(Database issue), D966–D974 (2014). http://doi.org/10.1093/nar/gkt1026CrossRefGoogle Scholar
  14. 14.
    U.S. National Library of Medicine: Fact Sheet: Medical Subject Headings (MeSH). https://www.nlm.nih.gov/pubs/factsheets/mesh.html (cit. 3. 9. 2018)
  15. 15.
    W3C. OWL 2 Web Ontology Language: Document Overview (Second Edition), W3C Recommendation 11 December 2012. Retrieved 25 Apr 2018 from https://www.w3.org/TR/2012/REC-owl2-overview-20121211/#
  16. 16.
    W3C. RDF 1.1 Concepts and Abstract Syntax, W3C Recommendation 25 February 2014. Retrieved 25 Apr 2018 from https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
  17. 17.
    W3C. RDF Schema 1.1, W3C Recommendation 25 February 2014. Retrieved 26 Apr 2018 from https://www.w3.org/TR/2014/REC-rdf-schema-20140225/
  18. 18.
    ISO: ISO 13250-2 Topic Maps—Data Model. Retrieved 5 Apr 2018 from http://www.isotopicmaps.org/sam/
  19. 19.
    Garshol, L.M.: The Linear Topic Map Notation. Definition and introduction, ver. 1.1 (2001). Retrieved 12 Mar 2018 from http://www.regnet.org/members/demo/ontopia/doc/misc/ltm.html
  20. 20.
    Ontopia. Ontopia homepage. Retrieved 26 Apr 2018 from http://svn.mssm.nl/
  21. 21.
    W3C. HTML 5.2, W3C Recommendation, 14 December 2017. Retrieved 23 Apr 2018 from https://www.w3.org/TR/html5/
  22. 22.
    Lamy, J.B.: Owlready: ontology-oriented programming in Python with automatic classification and high level constructs for biomedical ontologies. Artif. Intell. Med. 80, 11–28 (2017)CrossRefGoogle Scholar
  23. 23.
    Flask. Retrieved 21 Dec 2018 from http://flask.pocoo.org/

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Informatics and ManagementUniversity of Hradec KrálovéHradec KrálovéCzech Republic

Personalised recommendations