Skip to main content

Benchmarking Human Likeness of Bipedal Robot Locomotion: State of the Art and Future Trends

  • Chapter
  • First Online:
Book cover Metrics of Sensory Motor Coordination and Integration in Robots and Animals

Abstract

The difficulty of defining standard benchmarks for human likeness is a well-know problem in bipedal robotics. This chapter reviews methods and criteria for the assessment of the sensorimotor mechanisms involved in human walking and posture. We focused on the potential of the reviewed methods to be used as benchmarks for human-like locomotion of bipedal robots. For walking conditions, several criteria and methods related to dynamic similarity, passivity and dynamicity, static stability, and energy consumption have been identified. As for standing functions, we identified the most relevant features characterizing the human postural sensorimotor mechanisms, and presented the experimental protocols currently used to evaluate the human-like robotic performance. Furthermore, we discussed how the current robotic competitions such as RoboCup and DARPA Robotics Challenges can contribute to the identification of relevant benchmarks. Finally, we speculated about the importance of international consensus on the quantitative definition of human likeness, and suggested some future actions for improving collaboration and standardization within the scientific community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Behnke, S.: Robot competitions-ideal benchmarks for robotics research. In: Proceedings of Workshop II on Benchmarks in Robotics Research, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 9–15 October 2006

    Google Scholar 

  2. del Pôbil, A.: Why do we need benchmarks in robotics research? In: Proceedings of Workshop II on Benchmarks in Robotics Research, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 9–15 October 2006

    Google Scholar 

  3. Rahman, S.: Evaluating and benchmarking the interactions between a humanoid robot and a virtual human for a real-world social task. Communications in Computer and Information Science, vol. 409, pp. 184–197. Springer, Berlin (2013)

    Google Scholar 

  4. Benchmarking intelligent (multi-)robot systems. http://labrococo.dis.uniroma1.it/bimrs/

  5. Library of computational benchmark problems. http://www.iftomm-multibody.org/benchmark/

  6. Replicable robotics research, benchmarking and result exploitation: where we are. http://www.heronrobots.com/EuronGEMSig/gem-sig-events/rrr-and-benchmarking-where-we-are

  7. Evaluating AAL systems through competitive benchmarking. http://evaal.aaloa.org/

  8. H2R integrative approach for the emergence of human-like robot locomotion, FP7-ICT-2011-9, grant agreement no 60069. www.h2rproject.eu

  9. Vaughan, C., O’Malley, M.: Froude and the contribution of naval architecture to our understanding of bipedal locomotion. Gait & Posture 21(3), 350–362 (2005)

    Article  Google Scholar 

  10. Alexander, R.M.: Exploring Biomechanics: Animals in Motion. W.H. Freeman, New York (1992)

    Google Scholar 

  11. Alexander, R.M., Jayes, A.S.: A dynamic similarity hypothesis for the gaits of quadrupedal mammals. J. Zool. 201(1), 135–152 (1983)

    Article  Google Scholar 

  12. Alexander, R.M.: The gaits of bipedal and quadrupedal animals. Int. J. Robot. Res. 3(2), 49–59 (1984)

    Article  Google Scholar 

  13. Vaughan, C.N., O’Malley, M.: Neuromaturation of human locomotion revealed by non-dimensional scaling. Exp. Brain Res. 153(1), 123–127 (2003)

    Article  Google Scholar 

  14. ASIMO: specifications (2013). http://asimo.honda.com/asimo-specs/

  15. Mummolo, C., Kim, J.H.: Passive and dynamic gait measures for biped mechanism: formulation and simulation analysis. Robotica 31, 555–572 (2013)

    Google Scholar 

  16. Mummolo, C., Mangialardi, L., Kim, J.H.: Quantifying dynamic characteristics of human walking for comprehensive gait cycle. J. Biomech. Eng. 135, 9 (2013)

    Google Scholar 

  17. Messuri, D., Klen, C.: Automatic body regulation for maintaining stability of a legged vehicle during rough-terrain locomotion. IEEE J. Robot. Autom. 1(3), 132–141 (1985)

    Article  Google Scholar 

  18. Hirose, S., Tsukagoshi, H., Yoneda, K.: Normalized energy stability margin: Generalized stability criterion for walking vehicles. In: Proceedings of International Conference Climbing and Walking Robots, pp. 71–76. Brussels, Belgium (1998)

    Google Scholar 

  19. Lin, B., Song, S.: Dynamic modeling, stability and energy efficiency of a quadrupedal walking machine. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 367–373. Atlanta, Georgia (1993)

    Google Scholar 

  20. Dermitzakis, K., Carbajal, J., Mardenb, J.: Scaling laws in robotics. Procedia Comput. Sci. 7, 250–252 (2011)

    Article  Google Scholar 

  21. Waldron, K.J., Hubert, C.: Scaling of robotic mechanisms. In: Proceedings. IEEE International Conference on Robotics and Automation, ICRA’00, vol. 1, pp. 40–45 (2000)

    Google Scholar 

  22. Caprari, G., Estier, T., Siegwart, R.: Fascination of down scaling—alice the sugar cube robot. J. Micromechatronics 1(3), 177–189 (2002)

    Article  Google Scholar 

  23. Lemire, D.: Faster retrieval with a two-pass dynamic-time-warping lower bound. Pattern Recogn. 42(9), 2169–2180 (2009)

    Article  Google Scholar 

  24. Keogh, E., Ratanamahatana, C.A.: Exact indexing of dynamic time warping. Knowl. Inf. Syst. 7(3), 358–386 (2005)

    Google Scholar 

  25. Rahman, S.: Generating human-like social motion in a human-looking humanoid robot: the biomimetic approach. In: Proceedings of 2013 IEEE International Conference on Robotics and Biomimetics (IEEE ROBIO 2013), accepted

    Google Scholar 

  26. Zuntz, N., Geppert, G.: Ueber die Natur der normalen Athemreize und den Ort ihrer Wirkung. Eur. J. Appl. Physiol. 38, 337–338 (1886)

    Article  Google Scholar 

  27. Taylor, C.R., Heglund, N.C., Maloiy, G.M.: Energetics and mechanics of terrestrial locomotion. I. Metabolic energy consumption as a function of speed and body size in birds and mammals. J. Exp. Biol. 97, 1–21 (1982)

    Google Scholar 

  28. Froget, G., Butler, P.J., Woakes, A.J., et al.: Heart rate and energetics of freeranging king penguins (Aptenodytes patagonicus). J. Exp. Biol. 207(Pt 22), 3917–3926 (2004)

    Article  Google Scholar 

  29. Nakatsukasa, M., Ogihara, N., Hamada, Y., et al.: Energetic costs of bipedal and quadrupedal walking in Japanese macaques. Am. J. Phys. Anthropol. 124(3), 248–256 (2004)

    Article  Google Scholar 

  30. Griffin, T.M., Kram, R., Wickler, S.J., Hoyt, D.F.: Biomechanical and energetic determinants of the walk-trot transition in horses. J. Exp. Biol. 207(Pt 24), 4215–4223 (2004)

    Article  Google Scholar 

  31. Taylor, C.R.: Relating the mechanics and energetics during exercise. Adv. Vet. Sci. Comp. Med. 38A, 181–215 (1994)

    Google Scholar 

  32. Roberts, T.J., Kram, R., Weyand, P.G., Taylor, C.R.: Energetics of bipedal running. I. Metabolic cost of generating force. J. Exp. Biol. 201(Pt 19), 2745–2751 (1998)

    Google Scholar 

  33. Taylor, C.R., Schmidt-Nielsen, K., Raab, J.L.: Scaling of energetic cost of running to body size in mammals. Am. J. Physiol. 219(4), 1104–1107 (1970)

    Article  Google Scholar 

  34. Pandolf, K.B., Givoni, B., Goldman, R.F.: Predicting energy expenditure with loads while standing or walking very slowly. J. Appl. Physiol. 43(4), 577–581 (1977)

    Article  Google Scholar 

  35. Bennett, A.F., John-Alder, H.B.: The effect of body temperature on the locomotory energetics of lizards. J. Comp. Physiol. [B] 155(1), 21–27 (1984)

    Article  Google Scholar 

  36. Waters, R.L., Lunsford, B.R., Perry, J., Byrd, R.: Energy–speed relationship of walking: standard tables. J. Orthop. Res. 6(2), 215–222 (1988)

    Article  Google Scholar 

  37. Steudel-Numbers, K.L., Tilkens, M.J.: The effect of lower limb length on the energetic cost of locomotion: implications for fossil hominins. J. Hum. Evol. 47(1–2), 95–109 (2004)

    Article  Google Scholar 

  38. Saibene, F., Minetti, A.E.: Biomechanical and physiological aspects of legged locomotion in humans. Eur. J. Appl. Physiol. 88(4–5), 297–316 (2003)

    Article  Google Scholar 

  39. Minetti, A.E., Saibene, F., Ardigo, L.P., Atchou, G., Schena, F., Ferretti, G.: Pygmy locomotion. Eur. J. Appl. Physiol. Occup. Physiol. 68(4), 285–290 (1994)

    Google Scholar 

  40. Pontzer, H.: A new model predicting locomotor cost from limb length via force production. J. Exp. Biol. 208(Pt 8), 1513–1524 (2005)

    Article  Google Scholar 

  41. Gabrielli, G., von Karman, T.: What price speed—specific power required for propulsion of vehicles. Mech. Eng. 72(10), 775–781 (1950)

    Google Scholar 

  42. Collins, S., Ruina, A., Tedrake, R., Wisse, M.: Efficient bipedal robots based on passive-dynamic walkers. Science 307, 1082–1085 (2005)

    Article  Google Scholar 

  43. Collins, S., Wisse, M., Ruina, A.: A three-dimensional passive-dynamic walking robot with two legs and knees. Int. J. Robot. Res. 20, 607–615 (2001)

    Article  Google Scholar 

  44. Bhounsule, P., Pranav, A., Cortell, J., Ruina, A.: Design and control of ranger: an energy-efficient, dynamic walking robot. In: Proceedings of CLAWAR (2012)

    Google Scholar 

  45. Alexandrov, A.V., Frolov, A.A., Horak, F.B., Carlson-Kuhta, P., Park, S.: Feedback equilibrium control during human standing. Biol. Cybern. 93, 309–322 (2005)

    Article  Google Scholar 

  46. Peterka, R.J.: Sensorimotor integration in human postural control. J. Neurophysiol. 88, 1097–1118 (2002)

    Article  Google Scholar 

  47. Mergner, T., Maurer, C., Peterka, R.J.: A multisensory posture control model of human upright stance. Prog. Brain Res. 142, 189–201 (2003)

    Article  Google Scholar 

  48. Maurer, C., Mergner, T., Peterka, R.J.: Multisensory control of human upright stance. Exp. Brain Res. 171, 231–250 (2006)

    Article  Google Scholar 

  49. Mergner, T.: A neurological view on reactive human stance control. Annu. Rev. Control 34, 177–198 (2010)

    Article  Google Scholar 

  50. Mergner, T., Schweigart, G., Fennell, L.: Vestibular humanoid postural control. J. Physiol. Paris 103, 178–194 (2009)

    Google Scholar 

  51. Lippi, V., Mergner, T., Hettich, G.: A Bio-inspired Modular System for Humanoid Posture Control. In: Ugur, E., Oztop, E., Morimoto, J., Ishii, S. (eds.) Proceedings of IROS 2013 Workshop on Neuroscience and Robotics “Towards a robot-enabled, neuroscience-guided healthy society”, 3 November 2013, Tokyo, Japan

    Google Scholar 

  52. Hettich, G., Lippi, V., Mergner, T.: Human-like sensor fusion mechanisms in a postural control robot. In: Neurotechnix 2013, Sensory Fusion for Diagnostics and Neurorehabilitation - SensoryFusion 2013, 18–20 September 2013, Vilamoura, Portugal

    Google Scholar 

  53. Angel P. del Pobil: research benchmarks V1. EURON report (2005)

    Google Scholar 

  54. R. Steven rainwater: robot competition FAQ. http://robots.net/rcfaq.html

  55. Kitano, Hiroaki, Asada, Minoru: The RoboCup humanoid challenge as the millennium challenge for advanced robotics. Adv. Robot. 13(8), 723–737 (2000)

    Article  Google Scholar 

  56. Darpa robotic challenge trials. http://www.theroboticschallenge.org/

Download references

Acknowledgements

This research activity has been founded by the European Seventh Framework Programme FP7-ICT-2011-9, under the grant agreement no 60069 - H2R “Integrative Approach for the Emergence of Human-like Robot Locomotion”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Torricelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Torricelli, D. et al. (2020). Benchmarking Human Likeness of Bipedal Robot Locomotion: State of the Art and Future Trends. In: Bonsignorio, F., Messina, E., del Pobil, A., Hallam, J. (eds) Metrics of Sensory Motor Coordination and Integration in Robots and Animals. Cognitive Systems Monographs, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-030-14126-4_8

Download citation

Publish with us

Policies and ethics