Ans2vec: A Scoring System for Short Answers

  • Wael Hassan GomaaEmail author
  • Aly Aly Fahmy
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 921)


Automatic scoring is a complex task in computational linguistics, particularly in an educational context. Sentences vectors (sent2vec) approaches affirmed their prosperity recently as favorable models for sentence representation. In this research, we propose an efficient and uncomplicated short answer grading model named Ans2vec. Skip-thought vector approach is used to convert both model and student’s answers into meaningful vectors to measure the similarity between them. Ans2vec model achieves promising results on three different benchmarking data sets. For Texas data set; Ans2vec achieves the best Pearson correlation value (0.63) compared to all related systems.


Automatic scoring Short answer grading Sentence embeddings 


  1. 1.
    Gomaa, W.H., Fahmy, A.A.: Tapping into the power of automatic scoring. In: The Eleventh International Conference on Language Engineering, Egyptian Society of Language Engineering (ESOLEC) (2011)Google Scholar
  2. 2.
    Gomaa, W.H., Fahmy, A.A.: Arabic short answer scoring with effective feedback for students. Int. J. Comput. Appl. 86(2), 35–41 (2014)Google Scholar
  3. 3.
    Magooda, A.E., Zahran, M.A., Rashwan, M., Raafat, H.M., Fayek, M.B.: Vector based techniques for short answer grading. In: FLAIRS Conference, pp. 238–243, March 2016Google Scholar
  4. 4.
    Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space (2013). arXiv preprint: arXiv:1301.3781
  5. 5.
    Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)Google Scholar
  6. 6.
    Jiao, X., Wang, F., Feng, D.: Convolutional neural network for universal sentence embeddings. In: Proceedings of the 27th International Conference on Computational Linguistics, pp. 2470–2481 (2018)Google Scholar
  7. 7.
    Socher, R., Huval, B., Manning, C.D., Ng, A.Y.: Semantic compositionality through recursive matrix-vector spaces. In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pp. 1201–1211. Association for Computational Linguistics, July 2012Google Scholar
  8. 8.
    Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C.D., Ng, A., Potts, C.: Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1631–1642 (2013)Google Scholar
  9. 9.
    Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A convolutional neural network for modelling sentences (2014). arXiv preprint: arXiv:1404.2188
  10. 10.
    dos Santos, C., Gatti, M.: Deep convolutional neural networks for sentiment analysis of short texts. In: Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers, pp. 69–78 (2014)Google Scholar
  11. 11.
    Kim, Y.: Convolutional neural networks for sentence classification (2014). arXiv preprint: arXiv:1408.5882
  12. 12.
    Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling (2014). arXiv preprint: arXiv:1412.3555
  13. 13.
    Yin, W., Schütze, H.: Convolutional neural network for paraphrase identification. In: Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 901–911 (2015)Google Scholar
  14. 14.
    Tan, M., Dos Santos, C., Xiang, B., Zhou, B.: Improved representation learning for question answer matching. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Long Papers, vol. 1, pp. 464–473 (2016)Google Scholar
  15. 15.
    Lin, Z., Feng, M., Santos, C.N.D., Yu, M., Xiang, B., Zhou, B., Bengio, Y.: A structured self-attentive sentence embedding (2017). arXiv preprint: arXiv:1703.03130
  16. 16.
    Socher, R., Huang, E.H., Pennin, J., Manning, C.D., Ng, A.Y.: Dynamic pooling and unfolding recursive autoencoders for paraphrase detection. In: Advances in Neural Information Processing Systems, pp. 801–809 (2011)Google Scholar
  17. 17.
    Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: International Conference on Machine Learning, pp. 1188–1196, January 2014Google Scholar
  18. 18.
    Kiros, R., Zhu, Y., Salakhutdinov, R.R., Zemel, R., Urtasun, R., Torralba, A., Fidler, S.: Skip-thought vectors. In: Advances in Neural Information Processing Systems, pp. 3294–3302 (2015)Google Scholar
  19. 19.
    Kenter, T., Borisov, A., de Rijke, M.: Siamese cbow: Optimizing word embeddings for sentence representations (2016). arXiv preprint: arXiv:1606.04640
  20. 20.
    Hill, F., Cho, K., Korhonen, A.: Learning distributed representations of sentences from unlabelled data (2016). arXiv preprint: arXiv:1602.03483
  21. 21.
    Pagliardini, M., Gupta, P., Jaggi, M.: Unsupervised learning of sentence embeddings using compositional n-gram features (2017). arXiv preprint: arXiv:1703.02507
  22. 22.
    Wieting, J., Gimpel, K.: Revisiting recurrent networks for paraphrastic sentence embeddings (2017). arXiv preprint: arXiv:1705.00364
  23. 23.
    Ziai, R., Ott, N., Meurers, D.: Short answer assessment: establishing links between research strands. In: Proceedings of the Seventh Workshop on Building Educational Applications Using NLP, pp. 190–200. Association for Computational Linguistics, June 2012Google Scholar
  24. 24.
    Burrows, S., Gurevych, I., Stein, B.: The eras and trends of automatic short answer grading. Int. J. Artif. Intell. Educ. 25(1), 60–117 (2015)CrossRefGoogle Scholar
  25. 25.
    Leacock, C., Chodorow, M.: C-rater: automated scoring of short-answer questions. Comput. Humanit. 37(4), 389–405 (2003)CrossRefGoogle Scholar
  26. 26.
    Rosé, C.P., Roque, A., Bhembe, D., VanLehn, K.: A hybrid approach to content analysis for automatic essay grading. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology: Companion Volume of the Proceedings of HLT-NAACL 2003–Short papers, vol. 2, pp. 88–90. Association for Computational Linguistics, May 2003Google Scholar
  27. 27.
    Mitchell, T., Russell, T., Broomhead, P., Aldridge, N.: Towards robust computerised marking of free-text responses. In: Proceedings of the Sixth International Computer Assisted Assessment Conference. Loughborough University, Loughborough, UK (2002)Google Scholar
  28. 28.
    Pulman, S.G., Sukkarieh, J.Z.: Automatic short answer marking. In: Proceedings of the Second Workshop on Building Educational Applications Using NLP, pp. 9–16. Association for Computational Linguistics, June 2005Google Scholar
  29. 29.
    Mohler, M., Bunescu, R., Mihalcea, R.: Learning to grade short answer questions using semantic similarity measures and dependency graph alignments. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, vol. 1, pp. 752–762. Association for Computational Linguistics, June 2011Google Scholar
  30. 30.
    Hewlett Foundation: Automated student assessment prize: phase two – short answer scoring. Kaggle Competition (2012)Google Scholar
  31. 31.
    Dzikovska, M.O., Nielsen, R.D., Brew, C., Leacock, C., Giampiccolo, D., Bentivogli, L., Clark, P., Dagan, I., Dang, H.T.: SemEval-2013 task 7: the joint student response analysis and eighth recognizing textual entailment challenge. In: Diab, M., Baldwin, T., Baroni, M. (eds.) Proceedings of the 2nd Joint Conference on Lexical and Computational Semantics, Atlanta, pp. 1–12 (2013)Google Scholar
  32. 32.
    Burstein, J., Kaplan, R., Wolff, S., Lu, C.: Using lexical semantic techniques to classify free responses. In: Viegas, E. (ed.) Proceedings of the ACL SIGLEX Workshop on Breadth and Depth of Semantic Lexicons, Santa Cruz, pp. 20–29. Association for Computational Linguistics (1996)Google Scholar
  33. 33.
    Callear, D., Jerrams-Smith, J., Soh, V.: CAA of short non-MCQ answers. In: Danson, M., Eabry, C. (eds.) Proceedings of the 5th Computer Assisted Assessment Conference, pp. 1–14. Loughborough University, Loughborough (2001)Google Scholar
  34. 34.
    Wang, H.-C., Chang, C.-Y., Li, T.-Y.: Assessing creative problem-solving with automated text grading. Comput. Educ. 51(4), 1450–1466 (2008)CrossRefGoogle Scholar
  35. 35.
    Bachman, L.F., Carr, N., Kamei, G., Kim, M., Pan, M.J., Salvador, C., Sawaki, Y.: A reliable approach to automatic assessment of short answer free responses. In: Tseng, S.C., Chen, T.E., Liu, Y.F. (eds.) Proceedings of the 19th International Conference on Computational Linguistics, COLING 2002, Taipei, vol. 2, pp. 1–4. Association for Computational Linguistics (2002)Google Scholar
  36. 36.
    Sima, D., Schmuck, B., Szöll, S., Miklós, A.: Intelligent short text assessment in eMax. In: Rudas, I.J., Fodor, J., Kacprzyk, J. (eds.) Towards Intelligent Engineering and Information Technology. Studies in Computational Intelligence, vol. 243, pp. 435–445. Springer, Heidelberg (2009)Google Scholar
  37. 37.
    Cutrone, L., Chang, M., Kinshuk: Auto-assessor: computerized assessment system for marking student’s short-answers automatically. In: Narayanaswamy, N.S., Krishnan, M.S., Kinshuk, Srinivasan, R. (eds.) Proceedings of the 3rd IEEE International Conference on Technology for Education, Chennai, pp. 81–88. IEEE (2011)Google Scholar
  38. 38.
    Siddiqi, R., Harrison, C.J.: A systematic approach to the automated marking of short-answer questions. In: Anis, M.K., Khan, M.K., Zaidi, S.J.H. (eds.) Proceedings of the 12th International Multitopic Conference, Karachi, pp. 329–332. IEEE (2008)Google Scholar
  39. 39.
    Alfonseca, E., Pérez, D.: Automatic assessment of open ended questions with a BLEU-inspired algorithm and shallow NLP. In: Vicedo, J., Martínez-Barco, P., Muńoz, R., Saiz Noeda, M. (eds.) Advances in Natural Language Processing. Lecture Notes in Computer Science, vol. 3230, pp. 25–35. Springer, Berlin (2004)Google Scholar
  40. 40.
    Pérez-Marín, D., Pascual-Nieto, I.: Willow: a system to automatically assess students’ freetext answers by using a combination of shallow NLP techniques. Int. J. Contin. Eng. Educ. Life Long Learn. 21(2), 155–169 (2011)CrossRefGoogle Scholar
  41. 41.
    Bukai, O., Pokorny, R., Haynes, J.: An automated short-free-text scoring system: development and assessment. In: Proceedings of the 20th Interservice/Industry Training, Simulation, and Education Conference, pp. 1–11. National Training and Simulation Association (2006)Google Scholar
  42. 42.
    Gütl, C.: e-Examiner: towards a fully-automatic knowledge assessment tool applicable in adaptive e-learning systems. In: Ghassib, P.H. (ed.) Proceedings of the 2nd International Conference on Interactive Mobile and Computer Aided Learning, pp. 1–10. Amman (2007)Google Scholar
  43. 43.
    Bailey, S., Meurers, D.: Diagnosing meaning errors in short answers to reading comprehension questions. In: Tetreault, J., Burstein, J., De Felice, R. (eds.) Proceedings of the 3rd ACL Workshop on Innovative Use of NLP for Building Educational Applications, Columbus, pp. 107–115. Association for Computational Linguistics (2008)Google Scholar
  44. 44.
    Meurers, D., Ziai, R., Ott, N., Bailey, S.M.: Integrating parallel analysis modules to evaluate the meaning of answers to reading comprehension questions. Int. J. Contin. Eng. Educ. Life-Long Learn. 21(4), 355–369 (2011)CrossRefGoogle Scholar
  45. 45.
    Gomaa, W.H., Fahmy, A.A.: Short answer grading using string similarity and corpus-based similarity. Int. J. Adv. Comput. Sci. and Appl. (IJACSA) 3(11), 115–121 (2012)Google Scholar
  46. 46.
    Gomaa, W.H., Fahmy, A.A.: Automatic scoring for answers to Arabic test questions. Comput. Speech Lang. 28(4), 833–857 (2014)CrossRefGoogle Scholar
  47. 47.
    Sultan, M.A., Salazar, C., Sumner, T.: Fast and easy short answer grading with high accuracy. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 1070–1075 (2016)Google Scholar
  48. 48.
    Gomaa, W.H., Fahmy, A.A.: A survey of text similarity approaches. Int. J. Comput. Appl. 68(13), 13–18 (2013)Google Scholar
  49. 49.
    Tai, K.S., Socher, R., Manning, C.D.: Improved semantic representations from tree-structured long short-term memory networks (2015). arXiv preprint: arXiv:1503.00075
  50. 50.
    Dzikovska, M.O., Nielsen, R.D., Brew, C., Leacock, C., Giampiccolo, D., Bentivogli, L., Dang, H.T.: Semeval-2013 task 7: the joint student response analysis and 8th recognizing textual entailment challenge. North Texas State Univ Denton (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Beni-Suef UniversityBeni-SuefEgypt
  2. 2.Cairo UniversityCairoEgypt

Personalised recommendations