Advertisement

Rhombic Dodecahedron Grid—Coordinate System and 3D Digital Object Definitions

  • Ranita BiswasEmail author
  • Gaëlle Largeteau-Skapin
  • Rita Zrour
  • Eric Andres
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11414)

Abstract

We propose a new non-orthogonal basis to express the 3D Euclidean space in terms of a regular grid. Every grid point, each represented by integer 3-coordinates, corresponds to rhombic dodecahedron centroid. Rhombic dodecahedron is a space filling polyhedron which represents the close packing of spheres in 3D space and the Voronoi structures of the face centered cubic (FCC) lattice. In order to illustrate the interest of the new coordinate system, we propose the characterization of 3D digital plane with its topological features, such as the interrelation between the thickness of the digital plane and the separability constraint we aim to obtain. A characterization of a 3D digital sphere with relevant topological features is proposed as well with the help of a 48 symmetry that comes with the new coordinate system.

Keywords

Rhombic dodecahedron FCC grid 3D coordinate system Digital plane Digital sphere 

References

  1. 1.
    Andres, E., Acharya, R., Sibata, C.: Discrete analytical hyperplanes. Graph. Models Image Process. 59(5), 302–309 (1997)CrossRefGoogle Scholar
  2. 2.
    Andres, E., Jacob, M.-A.: The discrete analytical hyperspheres. IEEE Trans. Vis. Comput. Graph. 3, 75–86 (1997)CrossRefGoogle Scholar
  3. 3.
    Brimkov, V.E., Barneva, R.P.: Analytical honeycomb geometry for raster and volume graphics. Comput. J. 48(2), 180–199 (2005)CrossRefGoogle Scholar
  4. 4.
    Comic, L., Nagy, B.: A combinatorial 3-coordinate system for the face centered cubic grid. In: 2015 9th International Symposium on Image and Signal Processing and Analysis (ISPA), pp. 298–303 (2015)Google Scholar
  5. 5.
    Comic, L., Nagy, B.: A topological 4-coordinate system for the face centered cubic grid. Pattern Recognit. Lett. 83, 67–74 (2016)CrossRefGoogle Scholar
  6. 6.
    Grigoryan, A.M., Agaian, S.S.: 2D hexagonal quaternion Fourier transform in color image processing. In: Mobile Multimedia/Image Processing, Security, and Applications 2016, vol. 9869, p. 98690N. International Society for Optics and Photonics (2016)Google Scholar
  7. 7.
    He, X., Jia, W.: Hexagonal structure for intelligent vision. In: 2005 First International Conference on Information and Communication Technologies, ICICT 2005, pp. 52–64. IEEE (2005)Google Scholar
  8. 8.
    Kittel, C.: Introduction to Solid State Physics, 8th edn. Wiley, New York (2004)zbMATHGoogle Scholar
  9. 9.
    Koshti, G., Biswas, R., Largeteau-Skapin, G., Zrour, R., Andres, E., Bhowmick, P.: Sphere construction on the FCC grid interpreted as layered hexagonal grids in 3D. In: Barneva, R.P., Brimkov, V.E., Tavares, J.M.R.S. (eds.) IWCIA 2018. LNCS, vol. 11255, pp. 82–96. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-05288-1_7CrossRefGoogle Scholar
  10. 10.
    Kovalevsky, V.A.: Geometry of Locally Finite Spaces: Computer Agreeble Topology and Algorithms for Computer Imagery. Editing House Dr. Barbel Kovalevski, Berlin (2008)Google Scholar
  11. 11.
    Linh, T.K., Imiya, A., Strand, R., Borgefors, G.: Supercover of non-square and non-cubic grids. In: Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 88–97. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30503-3_7CrossRefGoogle Scholar
  12. 12.
    Mostafa, K., Her, I.: An edge detection method for hexagonal images. Int. J. Image Process. (IJIP) 10(4), 161 (2016)Google Scholar
  13. 13.
    Nagy, B.: Cellular topology on the triangular grid. In: Barneva, R.P., Brimkov, V.E., Aggarwal, J.K. (eds.) IWCIA 2012. LNCS, vol. 7655, pp. 143–153. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34732-0_11CrossRefGoogle Scholar
  14. 14.
    Nagy, B.: Cellular topology and topological coordinate systems on the hexagonal and on the triangular grids. Ann. Math. Artif. Intell. 75, 117–134 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Nagy, B., Strand, R.: A connection between \(\mathbb{Z}^n\) and generalized triangular grids. In: Advances in Visual Computing, Berlin, Heidelberg, pp. 1157–1166 (2008)Google Scholar
  16. 16.
    Nagy, B., Strand, R.: Non-traditional grids embedded in \(Z^n\). Int. J. Shape Model. 14, 209–228 (2008)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Nagy, B., Strand, R.: Neighborhood sequences in the diamond grid: algorithms with two and three neighbors. Int. J. Imaging Syst. Technol. 19(2), 146–157 (2009)CrossRefGoogle Scholar
  18. 18.
    Stojmenović, I.: Honeycomb networks. In: Wiedermann, J., Hájek, P. (eds.) MFCS 1995. LNCS, vol. 969, pp. 267–276. Springer, Heidelberg (1995).  https://doi.org/10.1007/3-540-60246-1_133CrossRefGoogle Scholar
  19. 19.
    Strand, R., Borgefors, G.: Resolution pyramids on the FCC and BCC grids. In: Andres, E., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 68–78. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-31965-8_7CrossRefGoogle Scholar
  20. 20.
    Strand, R., Nagy, B., Borgefors, G.: Digital distance functions on three-dimensional grids. Theor. Comput. Sci. 412(15), 1350–1363 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ranita Biswas
    • 1
    Email author
  • Gaëlle Largeteau-Skapin
    • 2
  • Rita Zrour
    • 2
  • Eric Andres
    • 2
  1. 1.Department of Computer Science and EngineeringIndian Institute of TechnologyRoorkeeIndia
  2. 2.University of Poitiers, Laboratory XLIM, ASALI, UMR CNRS 7252Futuroscope ChasseneuilFrance

Personalised recommendations