Single Scan Granulometry Estimation from an Asymmetric Distance Map

  • Nicolas NormandEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11414)


Granulometry, by characterizing the distribution of object sizes, is a powerful tool for the analysis of binary images. It may, for example, extract pertinent features in the context of texture classification. The granulometry is similar to a sieving process that filters image details of increasing sizes. Its computation classically relies on morphological openings, i.e. the sequence of an erosion followed by a dilation for each ball radius.

It is well known that a distance map can be described as an “erosion transform” that summarizes the erosions with the balls of all radii. Using a Steiner formula, we show how a vector of parameters measured on an eroded contour can be extrapolated to the measures of the dilation. Instead of completing the openings from the distance map by computing a dilation for each ball size, we can estimate their cardinality from the area, perimeter and Euler-Poincaré characteristic of each erosion. We extract these measures for all radii at once from an asymmetric distance map. The result is a fast streaming algorithm that provides an estimate of the granulometry distribution, in a single scan of the image and with very limited memory footprint.


Granulometry Discrete distance Pattern spectrum 


  1. 1.
    Coeurjolly, D.: Fast and accurate approximation of digital shape thickness distribution in arbitrary dimension. Comput. Vis. Image Underst. 116(12), 1159–1167 (2012). ISSN 1077–3142CrossRefGoogle Scholar
  2. 2.
    Federer, H.: Curvature measures. Trans. Am. Math. Soc. 93(3), 418–491 (1959)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Guderlei, R., Klenk, S., Mayer, J., Schmidt, V., Spodarev, E.: Algorithms for the computation of the Minkowski functionals of deterministic and random polyconvex sets. Image Vis. Comput. 25(4), 464–474 (2007). International Symposium on Mathematical Morphology 2005. ISSN 0262–8856CrossRefGoogle Scholar
  4. 4.
    Klenk, S., Schmidt, V., Spodarev, E.: A new algorithmic approach to the computation of Minkowski functionals of polyconvex sets. Comput. Geom. 34(3), 127–148 (2006). ISSN 0925–7721MathSciNetCrossRefGoogle Scholar
  5. 5.
    Matheron, G.: La formule de Steiner pour les érosions. J. Appl. Probab. 15(1), 126–135 (1978). French. ISSN 00219002CrossRefGoogle Scholar
  6. 6.
    Normand, N., Strand, R., Evenou, P., Arlicot, A.: A streaming distance transform algorithm for neighborhood-sequence distances. Image Process. Line 4, 196–203 (2014)CrossRefGoogle Scholar
  7. 7.
    Normand, N., Strand, R., Evenou, P., Arlicot, A.: Minimal-delay distance transform for neighborhood-sequence distances in 2D and 3D. Comput. Vis. Image Underst. 117(4), 409–417 (2013)CrossRefGoogle Scholar
  8. 8.
    Pick, G.A.: Geometrisches zur Zahlenlehre. Sitzungsberichte des Deutschen Naturwissenschaftlich-Medicinischen Vereines für Böhmen “Lotos” in Prag 47, 311–319 (1899). GermanMathSciNetzbMATHGoogle Scholar
  9. 9.
    Snidaro, L., Foresti, G.L.: Real-time thresholding with Euler numbers. Pattern Recogn. Lett. 24(9–10), 1533–1544 (2003). ISSN 0167–8655CrossRefGoogle Scholar
  10. 10.
    Steiner, J.: Über parallele Flächen. In: Monatsbericht der Akademie der Wissenschaften zu Berlin, pp. 114–118 (1840, German)Google Scholar
  11. 11.
    Vincent, L.M.: Fast opening functions and morphological granulometries. In: Proceedings of SPIE Image Algebra and Morphological Image Processing V, vol. 2300, no. 1, pp. 253–267, July 1994Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.LS2N UMR 6004, Polytech NantesUniversité de NantesNantesFrance

Personalised recommendations