Skip to main content

A Quantum Algorithm for Minimising the Effective Graph Resistance upon Edge Addition

  • Conference paper
  • First Online:
Quantum Technology and Optimization Problems (QTOP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11413))

Included in the following conference series:

  • 1954 Accesses

Abstract

In this work, we consider the following problem: given a graph, the addition of which single edge minimises the effective graph resistance of the resulting (or, augmented) graph. A graph’s effective graph resistance is inversely proportional to its robustness, which means the graph augmentation problem is relevant to, in particular, applications involving the robustness and augmentation of complex networks. On a classical computer, the best known algorithm for a graph with N vertices has time complexity \(\mathcal {O}(N^5)\). We show that it is possible to do better: Dürr and Høyer’s quantum algorithm solves the problem in time \(\mathcal {O}(N^4)\). We conclude with a simulation of the algorithm and solve ten small instances of the graph augmentation problem on the Quantum Inspire quantum computing platform.

Parts of this work are heavily based on the contents of De Ridder’s master’s thesis, in particular, Sects. 2 and 4. Readers interested in a more extensive treatment of the subject matter discussed in each of these sections are referred to the thesis available at https://www.ru.nl/publish/pages/769526/z_finn_de_ridder.pdf.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbas, W., Egerstedt, M.: Robust graph topologies for networked systems. In: IFAC Proceedings, vol. 45, no. 26, pp. 85–90, September 2012. https://doi.org/10.3182/20120914-2-US-4030.00052, https://linkinghub.elsevier.com/retrieve/pii/S147466701534814X

  2. Asztalos, A., Sreenivasan, S., Szymanski, B., Korniss, G.: Distributed flow optimization and cascading effects in weighted complex networks. Eur. Phys. J. B 85(8) (2012). https://doi.org/10.1140/epjb/e2012-30122-3, http://www.springerlink.com/index/10.1140/epjb/e2012-30122-3

  3. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching. Fortschritte der Physik 46(4–5), 493–505 (1998)

    Article  Google Scholar 

  4. Deng, H.: On the minimum Kirchhoff index of graphs with a given number of cut-edges. MATCH Commun. Math. Comput. Chem. 63, 171–180 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Dürr, C., Heiligman, M., Høyer, P., Mhalla, M.: Quantum query complexity of some graph problems. SIAM J. Comput. 35(6), 1310–1328 (2006)

    Article  MathSciNet  Google Scholar 

  6. Dürr, C., Høyer, P.: A quantum algorithm for finding the minimum. arXiv:quant-ph/9607014, July 1996. http://arxiv.org/abs/quant-ph/9607014

  7. Ellens, W., Spieksma, F., Van Mieghem, P., Jamakovic, A., Kooij, R.: Effective graph resistance. Linear Algebra Appl. 435(10), 2491–2506 (2011). https://doi.org/10.1016/j.laa.2011.02.024, http://linkinghub.elsevier.com/retrieve/pii/S0024379511001443

  8. Ghosh, A., Boyd, S., Saberi, A.: Minimizing effective resistance of a graph. SIAM Rev. 50(1), 37–66 (2008). https://doi.org/10.1137/050645452, http://epubs.siam.org/doi/10.1137/050645452

  9. Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences, 4th edn. The Johns Hopkins University Press, Baltimore (2013)

    MATH  Google Scholar 

  10. Grover, L.K.: A fast quantum mechanical algorithm for database search, pp. 212–219. ACM Press (1996). https://doi.org/10.1145/237814.237866, http://portal.acm.org/citation.cfm?doid=237814.237866

  11. Harary, F.: Graph Theory. Perseus Books, Cambridge (2001)

    MATH  Google Scholar 

  12. Kim, Y.: Bisection algorithm of increasing algebraic connectivity by adding an edge. IEEE Trans. Autom. Control 55(1), 170–174 (2010). https://doi.org/10.1109/TAC.2009.2033763, http://ieeexplore.ieee.org/document/5340588/

  13. Koç, Y., Warnier, M., Mieghem, P.V., Kooij, R.E., Brazier, F.M.: The impact of the topology on cascading failures in a power grid model. Physica A: Stat. Mech. Appl. 402, 169–179 (2014). https://doi.org/10.1016/j.physa.2014.01.056, https://linkinghub.elsevier.com/retrieve/pii/S0378437114000776

  14. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 10th Anniversary edn. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  15. QuTech: Quantum Inspire (2018). https://www.quantum-inspire.com/. Accessed 15 Nov 2018

  16. Van Mieghem, P.: Graph Spectra for Complex Networks. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  17. Wang, H., Van Mieghem, P.: Algebraic connectivity optimization via link addition. In: Proceedings of the 3rd International Conference on Bio-Inspired Models of Network, Information and Computing Sytems, BIONETICS 2008, pp. 22:1–22:8, ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), Brussels (2008). http://dl.acm.org/citation.cfm?id=1512504.1512532

  18. Wang, X., Feng, L., Kooij, R.E., Marzo, J.L.: Inconsistencies among spectral robustness metrics. In: Proceedings of QSHINE 2018–14th EAI International Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness (2018)

    Google Scholar 

  19. Wang, X., Koç, Y., Kooij, R.E., Van Mieghem, P.: A network approach for power grid robustness against cascading failures. In: 2015 7th International Workshop on Reliable Networks Design and Modeling (RNDM), pp. 208–214. IEEE, Munich, October 2015. https://doi.org/10.1109/RNDM.2015.7325231, http://ieeexplore.ieee.org/document/7325231/

  20. Wang, X., Pournaras, E., Kooij, R.E., Van Mieghem, P.: Improving robustness of complex networks via the effective graph resistance. Eur. Phys. J. B 87(9) (2014). https://doi.org/10.1140/epjb/e2014-50276-0, http://link.springer.com/10.1140/epjb/e2014-50276-0

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Finn de Ridder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Ridder, F., Neumann, N., Veugen, T., Kooij, R. (2019). A Quantum Algorithm for Minimising the Effective Graph Resistance upon Edge Addition. In: Feld, S., Linnhoff-Popien, C. (eds) Quantum Technology and Optimization Problems. QTOP 2019. Lecture Notes in Computer Science(), vol 11413. Springer, Cham. https://doi.org/10.1007/978-3-030-14082-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14082-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14081-6

  • Online ISBN: 978-3-030-14082-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics