Nash Embedding and Equilibrium in Pure Quantum States

  • Faisal Shah KhanEmail author
  • Travis S. Humble
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11413)


With respect to probabilistic mixtures of the strategies in non-cooperative games, quantum game theory provides guarantee of fixed-point stability, the so-called Nash equilibrium. This permits players to choose mixed quantum strategies that prepare mixed quantum states optimally under constraints. We show here that fixed-point stability of Nash equilibrium can also be guaranteed for pure quantum strategies via an application of the Nash embedding theorem, permitting players to prepare pure quantum states optimally under constraints.


Nash embedding Fixed-point stability Nash equilibrium 



Faisal Shah Khan is indebted to Davide La Torre and Joel Lucero-Bryan for helpful discussion on the topic of fixed-point theorems.


  1. 1.
    Albers, S., Eilts, S., Even-Dar, E., Mansour, Y., Roditty, L.: On Nash equilibria for a network creation game. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, pp. 89–98 (2006)Google Scholar
  2. 2.
    Fabrikant, A., Luthra, A., Menva, E., Papdimitriou, C., Shenker, S.: On a network creation game. In: Proceedings of the Twenty-Second Annual Symposium on Principles of Distributed Computing, pp. 347–351 (2003)Google Scholar
  3. 3.
    Liu, B., Dai, H., Zhang, M.: Playing distributed two-party quantum games on quantum networks. Quant. Inf. Process. 16, 290 (2017). Scholar
  4. 4.
    Scarpa, G.: Network games with quantum strategies. In: Sergienko, A., Pascazio, S., Villoresi, P. (eds.) QuantumComm 2009. LNICST, vol. 36, pp. 74–81. Springer, Heidelberg (2010). Scholar
  5. 5.
    Dasari, V., Sadlier, R.J., Prout, R., Williams, B.P., Humble, T.S.: Programmable multi-node quantum network design and simulation. In: SPIE Commercial+ Scientific Sensing and Imaging, pp. 98730B–98730B (2016)Google Scholar
  6. 6.
    Binmore, K.: Playing for Real. Oxford University Press, Oxford (2017)zbMATHGoogle Scholar
  7. 7.
    Blaquiere, A.: Wave mechanics as a two-player game. In: Blaquiére, A., Fer, F., Marzollo, A. (eds.) Dynamical Systems and Microphysics, vol. 261, pp. 33–69. Springer, Vienna (1980). Scholar
  8. 8.
    Meyer, D.: Quantum strategies. Phys. Rev. Lett. 82, 1052–1055 (1999)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Eisert, J., Wilkens, M., Lewenstien, M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83, 3077 (1999)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Nash, J.: Equilibrium points in N-player games. Proc. Natl. Acad. Sci. USA 36, 48–49 (1950)CrossRefGoogle Scholar
  11. 11.
    Kakutani, S.: A generalization of Brouwer’s fixed point theorem. Duke Math. J. 8(3), 457–459 (1941)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Glicksberg, I.L.: A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points. Proc. Am. Math. Soc. 3, 170–174 (1952)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Nash, J.: The imbedding problem for Riemannian manifolds. Ann. Math. 63(1), 20–63 (1956)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Bengtsson, I., Zyczkowski, K.: Geometry of Quantum States: An Introduction to Quantum Entanglement, 1st edn. Cambridge University Press, Cambridge (2007)zbMATHGoogle Scholar
  15. 15.
    Browuer, L.: Ueber eineindeutige, stetige transformationen von Flächen in sich. Math. Ann. 69 (1910)Google Scholar
  16. 16.
    Caratheodory, C.: Math. Ann. 64, 95 (1907).
  17. 17.
    Kannai, Y.: An elementary proof of the no-retraction theorem. Am. Math. Mon. 88(4), 264–268 (1981)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Teklu, B., Olivares, S., Paris, M.: Bayesian estimation of one-parameter qubit gates. J. Phys. B: Atom. Mol. Opt. Phys. 42, 035502 (6pp) (2009)Google Scholar
  19. 19.
    Teklu, B., Genoni, M., Olivares, S., Paris, M.: Phase estimation in the presence of phase diffusion: the qubit case. Phys. Scr. T140, 014062 (3pp) (2010)Google Scholar
  20. 20.
    Khan, F.S., Solmeyer, N., Balu, R., Humble, T.S.: Quantum games: a review of the history, current state, and interpretation. Quant. Inf. Process. 17(11), 42 pp. Article ID 309. arXiv:1803.07919 [quant-ph]
  21. 21.
    Khan, F.S., Phoenix, S.J.D.: Gaming the quantum. Quant. Inf. Comput. 13(3–4), 231–244 (2013)MathSciNetGoogle Scholar
  22. 22.
    Khan, F.S., Phoenix, S.J.D.: Mini-maximizing two qubit quantum computations. Quant. Inf. Process. 12(12), 3807–3819 (2013)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on the Theory of Computing, p. 212, May 1996Google Scholar
  24. 24.
    Williams, B.P., Britt, K.A., Humble, T.S.: Tamper-indicating quantum seal. Phys. Rev. Appl. 5, 014001 (2016)CrossRefGoogle Scholar
  25. 25.
    Chitambar, E., Leung, D., Mančinska, L., Ozols, M., Winter, A.: Everything you always wanted to know about LOCC (but were afraid to ask). Commun. Math. Phys. 328(1), 303–326 (2014)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adiabatic evolution (preprint).
  27. 27.
    McGeoch, C.C.: Adiabatic Quantum Computation and Quantum Annealing. Morgan & Claypool Publishers Series. Morgan & Claypool Publishers, San Rafael (2014)Google Scholar
  28. 28.
    Lucas, A.: Ising formulations of many NP problems. Front. Phys. 2, 5 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Center on Cyber-Physical Systems and Department of MathematicsKhalifa UniversityAbu DhabiUnited Arab Emirates
  2. 2.Quantum Computing Institute, Oak Ridge National LabOak RidgeUSA

Personalised recommendations