Skip to main content

Assessing Solution Quality of 3SAT on a Quantum Annealing Platform

  • Conference paper
  • First Online:
Quantum Technology and Optimization Problems (QTOP 2019)

Abstract

When solving propositional logic satisfiability (specifically 3SAT) using quantum annealing, we analyze the effect the difficulty of different instances of the problem has on the quality of the answer returned by the quantum annealer. A high-quality response from the annealer in this case is defined by a high percentage of correct solutions among the returned answers. We show that the phase transition regarding the computational complexity of the problem, which is well-known to occur for 3SAT on classical machines (where it causes a detrimental increase in runtime), persists in some form (but possibly to a lesser extent) for quantum annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This intuition matches the concept of constructivism in logic and mathematics. We are not only looking for the correct answer, but are looking for a correct and complete proof of an answer, giving us a single witness for each part of the formula.

  2. 2.

    https://toughsat.appspot.com/.

References

  1. Adams, D.: The Hitchhiker’s Guide to the Galaxy (1979)

    Google Scholar 

  2. Albash, T., Lidar, D.A.: Adiabatic quantum computing. arXiv:1611.04471 (2016)

  3. Amara, P., Hsu, D., Straub, J.E.: Global energy minimum searches using an approximate solution of the imaginary time Schrödinger equation. J. Phys. Chem. 97(25), 6715–6721 (1993)

    Article  Google Scholar 

  4. Apolloni, B., Carvalho, C., De Falco, D.: Quantum stochastic optimization. Stoch. Process. Their Appl. 33(2), 233–244 (1989)

    Article  MathSciNet  Google Scholar 

  5. Apolloni, B., De Falco, D., Cesa-Bianchi, N.: A numerical implementation of “quantum annealing”. Technical report (1988)

    Google Scholar 

  6. Ausiello, G., Protasi, M., Marchetti-Spaccamela, A., Gambosi, G., Crescenzi, P., Kann, V.: Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties, 1st edn. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-58412-1

    Book  MATH  Google Scholar 

  7. Benjamin, S.C., Zhao, L., Fitzsimons, J.F.: Measurement-driven quantum computing: Performance of a 3-SAT solver. arXiv:1711.02687 (2017)

  8. Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM J. Comput. 26(5), 1411–1473 (1997)

    Article  MathSciNet  Google Scholar 

  9. Bravyi, S., Gosset, D., Koenig, R.: Quantum advantage with shallow circuits. Science 362(6412), 308–311 (2018)

    Article  Google Scholar 

  10. Cheeseman, P.C., Kanefsky, B., Taylor, W.M.: Where the really hard problems are. In: IJCAI, vol. 91 (1991)

    Google Scholar 

  11. Chen, L., Aihara, K.: Chaotic simulated annealing by a neural network model with transient chaos. Neural Netw. 8(6), 915–930 (1995)

    Article  Google Scholar 

  12. Choi, V.: Adiabatic quantum algorithms for the NP-complete maximum-weight independent set, exact cover and 3SAT problems. arXiv:1004.2226 (2010)

  13. Choi, V.: Different adiabatic quantum optimization algorithms for the NP-complete exact cover and 3SAT problems. Quant. Inform. Comput. 11(7–8), 638–648 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the Third Annual ACM Symposium on Theory of Computing. ACM (1971)

    Google Scholar 

  15. D-Wave Systems: Postprocessing Methods on D-Wave Systems (2016)

    Google Scholar 

  16. Ding, J., Sly, A., Sun, N.: Proof of the satisfiability conjecture for large k. In: Proceedings of the 47th Annual ACM Symposium on Theory of Computing, STOC 2015. ACM, New York (2015)

    Google Scholar 

  17. Farhi, E., Goldstone, J., Gosset, D., Gutmann, S., Meyer, H.B., Shor, P.: Quantum adiabatic algorithms, small gaps, and different paths. arXiv:0909.4766 (2009)

  18. Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adiabatic evolution. arXiv preprint quant-ph/0001106 (2000)

    Google Scholar 

  19. Feld, S., et al.: A hybrid solution method for the capacitated vehicle routing problem using a quantum annealer. arXiv preprint arXiv:1811.07403 (2018)

  20. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  21. Finnila, A., Gomez, M., Sebenik, C., Stenson, C., Doll, J.: Quantum annealing: a new method for minimizing multidimensional functions. Chem. Phys. Lett. 219(5–6), 343–348 (1994)

    Article  Google Scholar 

  22. Gendreau, M., Hertz, A., Laporte, G.: A Tabu search heuristic for the vehicle routing problem. Manag. Sci. 40(10), 1276–1290 (1994)

    Article  Google Scholar 

  23. Glover, F., Laguna, M.: Tabu search*. In: Pardalos, P.M., Du, D.-Z., Graham, R.L. (eds.) Handbook of Combinatorial Optimization, pp. 3261–3362. Springer, New York (2013). https://doi.org/10.1007/978-1-4419-7997-1_17

    Chapter  Google Scholar 

  24. Heim, B., Brown, E.W., Wecker, D., Troyer, M.: Designing adiabatic quantum optimization: a case study for the TSP. arXiv:1702.06248 (2017)

  25. Hsu, T.J., Jin, F., Seidel, C., Neukart, F., De Raedt, H., Michielsen, K.: Quantum annealing with anneal path control: application to 2-SAT problems with known energy landscapes. arXiv:1810.00194 (2018)

  26. Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Phys. Rev. E 58(5), 5355 (1998)

    Article  Google Scholar 

  27. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  28. Kirkpatrick, S., Selman, B.: Critical behavior in the satisfiability of random Boolean expressions. Science 264(5163), 1297–1301 (1994)

    Article  MathSciNet  Google Scholar 

  29. Klauck, H.: The complexity of quantum disjointness. In: Leibniz International Proceedings in Informatics, vol. 83. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

    Google Scholar 

  30. Lucas, A.: Ising formulations of many NP problems. Front. Phys. 2, 5 (2014)

    Article  Google Scholar 

  31. Mandra, S., Zhu, Z., Katzgraber, H.G.: Exponentially biased ground-state sampling of quantum annealing machines with transverse-field driving hamiltonians. Phys. Rev. Lett. 118(7), 070502 (2017)

    Article  Google Scholar 

  32. Marriott, C., Watrous, J.: Quantum Arthur-Merlin games. Comput. Complex. 14(2), 122–152 (2005)

    Article  MathSciNet  Google Scholar 

  33. McGeoch, C.C.: Adiabatic quantum computation and quantum annealing: theory and practice. Synth. Lect. Quantum Comput. 5(2), 1–93 (2014)

    Article  Google Scholar 

  34. McGeoch, C.C., Wang, C.: Experimental evaluation of an adiabiatic quantum system for combinatorial optimization. In: Proceedings of the ACM International Conference on Computing Frontiers. ACM (2013)

    Google Scholar 

  35. Mézard, M., Zecchina, R.: Random k-satisfiability problem: from an analytic solution to an efficient algorithm. Phys. Rev. E 66(5), 056126 (2002)

    Article  Google Scholar 

  36. Monasson, R., Zecchina, R.: Entropy of the k-satisfiability problem. Phys. Rev. Lett. 76(21), 3881 (1996)

    Article  MathSciNet  Google Scholar 

  37. Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L.: Determining computational complexity from characteristic “phase transitions”. Nature 400(6740), 133 (1999)

    Article  MathSciNet  Google Scholar 

  38. Morimae, T., Nishimura, H.: Merlinization of complexity classes above BQP. arXiv:1704.01514 (2017)

  39. Moylett, D.J., Linden, N., Montanaro, A.: Quantum speedup of the traveling-salesman problem for bounded-degree graphs. Phys. Rev. A 95(3), 032323 (2017)

    Article  MathSciNet  Google Scholar 

  40. Murty, K.G., Kabadi, S.N.: Some NP-complete problems in quadratic and nonlinear programming. Math. Program. 39(2), 117–129 (1987)

    Article  MathSciNet  Google Scholar 

  41. Neukart, F., Compostella, G., Seidel, C., von Dollen, D., Yarkoni, S., Parney, B.: Traffic flow optimization using a quantum annealer. Front. ICT 4, 29 (2017)

    Article  Google Scholar 

  42. Rønnow, T.F., et al.: Defining and detecting quantum speedup. Science 345(6195), 420–424 (2014)

    Article  Google Scholar 

  43. Somma, R.D., Nagaj, D., Kieferová, M.: Quantum speedup by quantum annealing. Phys. Rev. Lett. 109(5), 050501 (2012)

    Article  Google Scholar 

  44. Strand, J., Przybysz, A., Ferguson, D., Zick, K.: ZZZ coupler for native embedding of MAX-3SAT problem instances in quantum annealing hardware. In: APS Meeting Abstracts (2017)

    Google Scholar 

  45. Van Dam, W., Mosca, M., Vazirani, U.: How powerful is adiabatic quantum computation? In: 42nd IEEE Symposium on Foundations of Computer Science. IEEE (2001)

    Google Scholar 

  46. Warren, R.H.: Small traveling salesman problems. J. Adv. Appl. Math. 2(2), 101–107 (2017)

    Google Scholar 

Download references

Acknowledgement

Research was funded by Volkswagen Group, department Group IT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Gabor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gabor, T. et al. (2019). Assessing Solution Quality of 3SAT on a Quantum Annealing Platform. In: Feld, S., Linnhoff-Popien, C. (eds) Quantum Technology and Optimization Problems. QTOP 2019. Lecture Notes in Computer Science(), vol 11413. Springer, Cham. https://doi.org/10.1007/978-3-030-14082-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14082-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14081-6

  • Online ISBN: 978-3-030-14082-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics