Skip to main content

The Shallow Subsurface of Karst Systems: Review and Directions

Part of the Advances in Karst Science book series (AKS)

Abstract

The shallow subsurface of karst systems (soil and epikarst) plays an important role in karst recharge processes. However, only a little research that directly characterized this zone has been conducted. In this paper, we review previous studies that focus on the soil and epikarst recharge processes, in particular on diffuse recharge processes. The literature is categorized by processes, methods and controlling factors, summarized in an overview table, and discussed in detail. Finally, new directions to advance research toward a better understanding of the hydrological dynamics in the karstic shallow subsurface are derived.

Keywords

  • Soil
  • Epikarst
  • Recharge processes
  • Review

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-14015-1_7
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-14015-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1

modified from Williams (1983)—P = Precipitation; AET = Actual Evapotranspiration

References

  • Aley, T.J., and S.L. Kirkland. 2012. ‘Down but Not Straight down: Significance of Lateral Flow in the Vadose Zone of Karst Terrains’. Carbonates and Evaporites 27 (2): 193–98. https://doi.org/10.1007/s13146-012-0106-5.

    CrossRef  Google Scholar 

  • Aquilina, L., B. Ladouche, and N. Dörfliger. 2006. ‘Water Storage and Transfer in the Epikarst of Karstic Systems during High Flow Periods’. Journal of Hydrology 327 (3): 472–85. https://doi.org/10.1016/j.jhydrol.2005.11.054.

    CrossRef  Google Scholar 

  • Bakalowicz, M. 2003. ‘The Epikarst, the Skin of the Karst’.

    Google Scholar 

  • Benavente, J., I. Vadillo, F. Carrasco, A. Soler, C. Liñán, and F. Moral. 2010. ‘Air Carbon Dioxide Contents in the Vadose Zone of a Mediterranean Karst’. Vadose Zone Journal 9 (1): 126–36. https://doi.org/10.2136/vzj2009.0027.

    CrossRef  Google Scholar 

  • Canora, F., M. D. Fidelibus, A. Sciortino, and G. Spilotro. 2008. ‘Variation of Infiltration Rate through Karstic Surfaces Due to Land Use Changes: A Case Study in Murgia (SE-Italy)’. Engineering Geology, Engineering and environmental problems in karst, 99 (3): 210–27. https://doi.org/10.1016/j.enggeo.2007.11.018.

    CrossRef  Google Scholar 

  • Champollion, C., S. Devile, J. Chéry, E. Doerflinger, N. Le Moigne, R. Bayer, and P. Vernant. 2017. ‘Estimating Epikarst Water Storage by Time-Lapse Surface to Depth Gravity Measurements’. Hydrol. Earth Syst. Sci. Discuss. 2017 (August): 1–27. https://doi.org/10.5194/hess-2016-355.

  • Charlier, J.B., C. Bertrand, and J. Mudry. 2012. ‘Conceptual Hydrogeological Model of Flow and Transport of Dissolved Organic Carbon in a Small Jura Karst System’. Journal of Hydrology 460–461 (August): 52–64. https://doi.org/10.1016/j.jhydrol.2012.06.043.

    CrossRef  Google Scholar 

  • Dorigo, W.P. Oevelen, W. Wagner, M. Drusch, S. Mecklenburg, A. Robock, and T. Jackson. 2011. ‘A New International Network for in Situ Soil Moisture Data’. Eos, Transactions American Geophysical Union 92 (17): 141–42. https://doi.org/10.1029/2011EO170001.

    CrossRef  Google Scholar 

  • Dreybrodt, W. 1990. ‘The Role of Dissolution Kinetics in the Development of Karst Aquifers in Limestone: A Model Simulation of Karst Evolution’. The Journal of Geology 98 (5): 639–55.

    CrossRef  Google Scholar 

  • Fidelibus M.D., G. Balacco, A. Gioia, V. Iacobellis, and G. Spilotro. 2016. ‘Mass Transport Triggered by Heavy Rainfall: The Role of Endorheic Basins and Epikarst in a Regional Karst Aquifer’. Hydrological Processes 31 (2): 394–408. https://doi.org/10.1002/hyp.11037.

    CrossRef  Google Scholar 

  • Ford, D., and P.D. Williams. 2013. Karst Hydrogeology and Geomorphology. John Wiley & Sons.

    Google Scholar 

  • Fu, Z. Y., H. S. Chen, W. Zhang, Q. X. Xu, S. Wang, and K. L. Wang. 2015. ‘Subsurface Flow in a Soil-Mantled Subtropical Dolomite Karst Slope: A Field Rainfall Simulation Study’. Geomorphology 250 (December): 1–14. https://doi.org/10.1016/j.geomorph.2015.08.012.

    CrossRef  Google Scholar 

  • Galibert P.Y. 2015. ‘Quantitative Estimation of Water Storage and Residence Time in the Epikarst with Time‐lapse Refraction Seismic’. Geophysical Prospecting 64 (2): 431–44. https://doi.org/10.1111/1365-2478.12272.

    CrossRef  Google Scholar 

  • Goldscheider, N., and D. Drew. 2007. Methods in Karst Hydrogeology: IAH: International Contributions to Hydrogeology, 26. CRC Press.

    Google Scholar 

  • Heilman J.L., M.E. Litvak, K.J.McInnes, J.F. Kjelgaard, R.H. Kamps, and S. Schwinning. 2012. ‘Water‐storage Capacity Controls Energy Partitioning and Water Use in Karst Ecosystems on the Edwards Plateau, Texas’. Ecohydrology 7 (1): 127–38. https://doi.org/10.1002/eco.1327.

    CrossRef  Google Scholar 

  • Houillon, N., R. Lastennet, A. Denis, and P. Malaurent. 2017. ‘Hydrochemical and Hydrodynamic Behavior of the Epikarst at the Lascaux Cave (Montignac, France)’. In EuroKarst 2016, Neuchâtel, edited by Philippe Renard and Catherine Bertrand, 319–26. Advances in Karst Science. Springer International Publishing.

    Google Scholar 

  • Jiang, G.H, F. Guo, J.C. Wu, H.J. Li, and H.L. Sun. 2008. ‘The Threshold Value of Epikarst Runoff in Forest Karst Mountain Area’. Environmental Geology 55 (1): 87–93. https://doi.org/10.1007/s00254-007-0967-4.

    CrossRef  Google Scholar 

  • Király, L. 1975. ‘Rapport sur l’état actuel des connaissances dans le domaine des caractères physiques des roches karstiques’. Hydrogeology of karstic terrains (Hydrogéologie des terrains karstiques) International Union of geological sciences, no. 3: 53–67.

    Google Scholar 

  • Klimchouk, A. 1995. ‘Karst Morphogenesis in the Epikarstic Zone’. Cave and Karst Science 21 (January): 45–50.

    Google Scholar 

  • ———. 2004. ‘Towards Defining, Delimiting and Classifying Epikarst: Its Origin, Processes and Variants of Geomorphic Evolution’.

    Google Scholar 

  • Kogovsek, J., and M. Petric. 2014. ‘Solute Transport Processes in a Karst Vadose Zone Characterized by Long-Term Tracer Tests (the Cave System of Postojnska Jama, Slovenia)’. Journal of Hydrology 519 (November): 1205–13. https://doi.org/10.1016/j.jhydrol.2014.08.047.

    CrossRef  Google Scholar 

  • Martini, E., U. Wollschläger, S. Kögler, T. Beherns, P. Dietrich, F. Reinstorf, K. Schmidt, M. Weiler, U. Werban, and S. Zacharias. 2015. ‘Spatial and Temporal Dynamics of Hillslope-Scale Soil Moisture Patterns: Characteristic States and Transition Mechanisms’, 2015, Vadose Zone Journal edition.

    Google Scholar 

  • Martos-Rosillo, S., A. González-Ramón, P. Jiménez-Gavilán, B. Andreo, J. J. Durán, and E. Mancera. 2015. ‘Review on Groundwater Recharge in Carbonate Aquifers from SW Mediterranean (Betic Cordillera, S Spain)’. Environmental Earth Sciences 74 (12): 7571–81. https://doi.org/10.1007/s12665-015-4673-3.

    CrossRef  Google Scholar 

  • Perrin, J., P.Y. Jeannin, and F. Zwahlen. 2003. ‘Epikarst Storage in a Karst Aquifer: A Conceptual Model Based on Isotopic Data, Milandre Test Site, Switzerland’. Journal of Hydrology 279 (1): 106–24. https://doi.org/10.1016/S0022-1694(03)00171-9.

    CrossRef  Google Scholar 

  • Peyraube, N., R. Lastennet, A. Denis, and P. Malaurent. 2013. ‘Estimation of Epikarst Air PCO2 Using Measurements of Water Δ13CTDIC, Cave Air PCO2 and Δ13CCO2’. Geochimica et Cosmochimica Acta 118 (October): 1–17. https://doi.org/10.1016/j.gca.2013.03.046.

    CrossRef  Google Scholar 

  • Pronk M., N. Goldscheider, J. Zopfi, and F. Zwahlen. 2008. ‘Percolation and Particle Transport in the Unsaturated Zone of a Karst Aquifer’. Groundwater 47 (3): 361–69. https://doi.org/10.1111/j.1745-6584.2008.00509.x.

    CrossRef  Google Scholar 

  • Sprenger, M., T.H.M Volkmann, T. Blume, and M. Weiler. 2015. ‘Estimating flow and Transport Parameters in the Unsaturated Zone with Pore Water Stable Isotopes’, 2015, Hydrology and Earth System Sciences edition.

    Google Scholar 

  • Tadros, C. V., P. C. Treble, A. Baker, I. Fairchild, S. Hankin, R. Roach, M. Markowska, and J. McDonald. 2016. ‘ENSO–Cave Drip Water Hydrochemical Relationship: A 7-Year Dataset from South-Eastern Australia’. Hydrol. Earth Syst. Sci. 20 (11): 4625–40. https://doi.org/10.5194/hess-20-4625-2016.

    CrossRef  Google Scholar 

  • Tooth, A.F., and I.J. Fairchild. 2003. ‘Soil and Karst Aquifer Hydrological Controls on the Geochemical Evolution of Speleothem-Forming Drip Waters, Crag Cave, Southwest Ireland’. Journal of Hydrology 273 (1): 51–68. https://doi.org/10.1016/S0022-1694(02)00349-9.

    CrossRef  Google Scholar 

  • Trček, B. 2007. ‘How Can the Epikarst Zone Influence the Karst Aquifer Hydraulic Behaviour?’ Environmental Geology 51 (5): 761–65. https://doi.org/10.1007/s00254-006-0387-x.

    CrossRef  Google Scholar 

  • Wada Y., P. H. van Beek Ludovicus, C.M. van Kempen, J.W.T.M. Reckman, S. Vasak, and M.F.P. Bierkens. 2010. ‘Global Depletion of Groundwater Resources’. Geophysical Research Letters 37 (20). https://doi.org/10.1029/2010GL044571.

    CrossRef  Google Scholar 

  • White, W. 2002. ‘Karst Hydrology: Recent Developments and Open Questions’. Engineering Geology 65 (August): 85–105. https://doi.org/10.1016/S0013-7952(01)00116-8.

    CrossRef  Google Scholar 

  • Williams, P.W. 1983. ‘The Role of the Subscutaneous Zone in Karst Hydrology’, 1983, Journal of Hydrology edition.

    Google Scholar 

  • Williams, P.W. 2004. ‘The Epikarst: Evolution of Understanding’. In Epikarst, 11–15.

    Google Scholar 

  • ———. 2008a. ‘The Role of the Epikarst in Karst and Cave Hydrogeology: A Review’. International Journal of Speleology 37 (1). http://dx.doi.org/10.5038/1827-806X.37.1.1.

  • Williams, P.W. 2008b. ‘The Role of the Epikarst in Karst and Cave Hydrogeology: A Review’. International Journal of Speleology 37 (1). http://dx.doi.org/10.5038/1827-806X.37.1.1.

    CrossRef  Google Scholar 

  • Zhang, Z., Xi Chen, X. Chen, and P. Shi. 2013. ‘Quantifying Time Lag of Epikarst-Spring Hydrograph Response to Rainfall Using Correlation and Spectral Analyses’. Hydrogeology Journal 21 (7): 1619–31. https://doi.org/10.1007/s10040-013-1041-9.

    CrossRef  Google Scholar 

Download references

Acknowledgements

This work was funded by the Emmy Noether-Programme of the German Research Foundation (DFG; grant number HA 8113/1-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romane Berthelin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Berthelin, R., Hartmann, A. (2020). The Shallow Subsurface of Karst Systems: Review and Directions. In: Bertrand, C., Denimal, S., Steinmann, M., Renard, P. (eds) Eurokarst 2018, Besançon. Advances in Karst Science. Springer, Cham. https://doi.org/10.1007/978-3-030-14015-1_7

Download citation