Skip to main content

Earth Tide Effect in Karstic and Non-karstic Aquifers in the Guinea Gulf

  • Conference paper
  • First Online:
Eurokarst 2018, Besançon

Part of the book series: Advances in Karst Science ((AKS))

  • 419 Accesses

Abstract

During long-term pumping tests in Gabon and Benin, we were surprised to observe large-amplitude tidal signals in boreholes located more than 20 km from the sea. This article describes these tidal signals (maximum amplitude, variation in time and space, phase shift, etc.) and attempts to interpret them. The signal amplitude varies considerably from one aquifer to another (from 2 mm to 110 cm) but is uniform within an aquifer and constitutes a signature. We are therefore seeking to use this signature to characterize the transmissive or capacitive properties of each aquifer. The use of this tool is limited by the difficulty of isolating the piezometric tidal signal among other phenomena that can mask it (pumping, rain, seasonal drying, etc.). Once the tidal signal is properly isolated, it can be used as an indicator of the risk of seawater intrusion. This concern is particularly acute if the aquifer consists of karstified rocks, as the intrusion is likely to extend several kilometres inland. It is therefore essential to be able to distinguish three situations with different levels of risk. Two of these situations have been relatively well documented: earth tides that do not raise a risk of seawater intrusion and ocean tides, which induce a very high risk of karst aquifers in direct contact with the sea. A third case should be added: that of ocean tides that induce periodic pressure variations in captive aquifers. The risk of seawater intrusion is then moderate, even when this tidal signal is very spectacular, as in some confined karst aquifers in Benin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bélanger, C., 2000. Modélisation numérique d’un essai d’aquifère dans un aquifère à nappe captive soumis à l’effet de marée. Mémoire de Maîtrise ès Sciences Appliquées éd. Montréal: Ecole Polytechnique de Montreal.

    Google Scholar 

  • Boussinecq J. 1904. Recherches théoriques sur l’écoulement des nappes d’eau infiltrées dans le sol et sur le débit des sources. Journal de mathématiques appliquées, fasc.1.

    Google Scholar 

  • Cazenove, E. d., 1971. Ondes phréatiques sinusoIdales. La Houille Blanche, Issue 7, pp. 601–616.

    Google Scholar 

  • Clark, W., 1965. Computing the barometric effeciency of a well. Journal of Hydraulic Engineering, 93, pp. 93–98.

    Google Scholar 

  • Collignon, B., 1992. Données nouvelles sur l’aquifère paléocène du bassin sédimentaire côtier bénino-togolais. Neuchâtel, 5ème Colloque d’hydrologie en pys calcaire et milieu fissuré.

    Google Scholar 

  • Collignon, B. & Ondo, C., 2016. Managed Aquifer Recharge (MAR) to Supply Libreville, a Water-Stressed City (Gabon). Dans: P. R. &. C. Bertrand, éd. Eurokarst 2016 - Advances in the Hydrogeology of Karst and Carbonate Reservoirs. Neufchatel: Springer, pp. 273–281.

    Google Scholar 

  • Cooper, H., Bredehoeft, J. & Papadopulos, L., 1965. The response of well-aquifer systems to seismic waves. Journal of Geophysical Research, 70 (6), pp. 3915–3926.

    Google Scholar 

  • Cuello, J., Guarracino, L. & L.B. Monachesi, 2017. Groundwater response to tidal fluctuations in wedge-shaped confoned aquifers. Journal of hydrogeology, Volume 25, pp. 1509–1515.

    Google Scholar 

  • Ferris, J., 1952. Cyclic fluctuations of water level as a basis for determining aquifer transmissivity, Washington: US Geological Survey.

    Google Scholar 

  • Grillot, J.-C., Clezio, M. L. & Bodoyan, A., 2015. Filtrages piézométriques préliminaires à l’analyse du comportement des eaux souterraines lors des crises sismiques: exemple dans le petit Caucase. Hydrological Science Journal, 40(5), pp. 647–662.

    Google Scholar 

  • Hsieh, P., Bredehoeft, J. & Farr, J., 1987. Determination of Aquifer Transmissivity From Earth Tide Analysis. Water Resources Research, 23(10), pp. 1824–1832.

    Google Scholar 

  • Krivic, P., 1982. Transmission des ondes de marée à travers l’aquifère côtier de Kras. Geologie, 25(2), pp. 309–325.

    Google Scholar 

  • Melchior, 1978. The Tides of the Planet Earth. Elmsford (N.Y.): Pergamon.

    Google Scholar 

  • P. Melchior & B. Ducarme, 1989. L’étude des phénomènes de marée gravimétrique. Geodynamique, 4(1), pp. 3–14.

    Google Scholar 

  • Petit, V. & Leforgeais, C., 2013. Evaluation de l’état quantitatif des masses d’eau souterraines de la Réunion, s.l.: BRGM / ONEMA.

    Google Scholar 

  • Rojstaczer, S. & Riley, F., 1990. Response of the Water Level in a Well to Earth Tides and Atmospheric Loading under Unconfined Conditions. Water Resource Research, 26(8), pp. 1803–1817.

    Google Scholar 

  • Service hydrographique et océanographique de la Marine, 1997. La marée. Brest: SHOM.

    Google Scholar 

  • Toll, N. & Rasmussen, T., 2007. Removal of Barometric Pressure Effect and Earth Tides form Observed Water Levels. Groundwater, 45(1), pp. 101–105.

    Google Scholar 

  • ZexuanXu, Basst, S., Hu, B. & S.C. Barret, 2016. Long distance seawater intrusion through a karst. Scientific reports, 6(32235).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Collignon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Collignon, B. (2020). Earth Tide Effect in Karstic and Non-karstic Aquifers in the Guinea Gulf. In: Bertrand, C., Denimal, S., Steinmann, M., Renard, P. (eds) Eurokarst 2018, Besançon. Advances in Karst Science. Springer, Cham. https://doi.org/10.1007/978-3-030-14015-1_26

Download citation

Publish with us

Policies and ethics