Skip to main content

Detailed Water Quality Monitoring at Various Points of the Krásnohorská Cave System (Slovakia)

  • Conference paper
  • First Online:
Eurokarst 2018, Besançon

Abstract

Detailed karstic water quality monitoring was performed in the Krásnohorská Cave system in the Slovenský kras Mts./Silická planina karstic plateau formed by Triassic limestones. The cave itself is 1550 m long, formed by a huge underground stream that can be followed in more than 400-m-long corridor. Here, two small visible side inlets to the stream are found. Some 100 metres above the cave entrance underground stream disappears in a siphon to emerge on the ground surface as a Buzgó karstic spring (5.3–1355.8 L s−1 discharge). Two other (but smaller) karstic springs are situated on the foot of the same karstic plateau within a distance of 200 m from the Krásnohorská Cave entrance, with yet unknown karstic network behind. 150-m-deep hydrogeological borehole RHV-4, exploited as drinking water source for the neighbouring village, is situated just in front of the Krásnohorská Cave entrance. Water at six monitoring points—both side inlets to the major underground stream and its end point (spring at the cave entrance), as well as smaller side springs and the borehole outside were regularly sampled for chemistry, δ18O, δ2H and tritium content in the period of June 2015–June 2016. Approximate weekly samplings were accompanied by precipitation sampling in the same extent, but in two weeks interval. Surprisingly high stability of karstic groundwater chemical composition was found. Content of dissolved HCO3, Ca2+, Mg2+, K+, Na+, Cl and NO3 remained unchanged even in the period of 20-fold raise of discharge of the Buzgó spring during the snowmelt period in February/March 2016. Results of 573 chemical analyses also show a great similarity of karstic groundwater chemical composition at different monitoring points. This was not the case of SO42−. Results of analyses pointed out that one part of the water circulation system is influenced by dissolved sulphates of geogenic origin, very probably occurring in Lower Triassic shales. These were not found in the outcrops in the recharge area, but their strong influence on water chemistry is characteristic. Groundwater flow rates of partial water circuit which is passing shales with sulphates seem to be more stable. Sulphate content is then diluted at high water stages and increases with groundwater depletion in respective monitoring points. Mean values of δ18O and δ2H are very similar at all monitoring points, found in the narrow intervals of −9.48 to −9.04‰ and −64.5 to −61.3‰, respectively. Recharging precipitation in the monitored period was somewhat heavier (−8.77 and −60.6‰) although the altitudinal difference of sampling places was more than 230 m. Comparing individual samplings in time series, δ18O differences may reach the range of 1.47‰ comparing to the 0.44‰ span of mean values (ranges of up to 10.7‰ in individual samplings and 3.2‰ in mean values for δ2H). Time series of δ18O and δ2H therefore point to different patterns/different mean transit times of water circulation at individual monitoring points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bajtoš, P, Malík, P, Repková, R, Máša, B (2017) Geochemické modelovanie tvorby chemického zloženia vody Krásnohorskej jaskyne v Slovenskom krase [Geochemical modelling of karst water chemical composition formation at the Krásnohorská jakyňa cave, Slovak Karst Mts. (Western Carpathians); in Slovak with English summary]. Mineralia Slovaca, 49(2017)1: 73–94

    Google Scholar 

  • Bakalowicz, M (2005) Karst Groundwater: A Challenge for New Resources. Hydrogeology Journal 13(1):148 160

    Article  Google Scholar 

  • Bodiš, D, Lopašovská, M, Lopašovský, K, Rapant, S (2000) Chemické zloženie snehovej pokrývky na Slovensku – výsledky 25-ročného pozorovania [Chemical composition of snow pack in Slovakia - the results of 25 years monitoring; in Slovak with English summary]. Podzemná voda VI. (2):162–173

    Google Scholar 

  • Craig, H (1961) Standard for reporting concentration of deuterium and oxygen-18 in natural waters. Science (133):1833 1834

    Article  Google Scholar 

  • Erdös, M (1995) Jaskyne, priepasti a vyvieračky severnej časti Silickej planiny. Slovenský kras, Liptovský Mikuláš, 33: 115–127

    Google Scholar 

  • Fournier, M, Massei, N, Bakalowicz, M, Dussart-Baptista L, Rodet, L, Dupont, JP (2007) Using turbidity dynamics and geochemical variability as a tool for understanding the behavior and vulnerability of karst aquifer. Hydrogeology Journal 15(4):689 704

    Article  Google Scholar 

  • Gaál, Ľ (2008) Geodynamika a vývoj jaskýň Slovenského krasu. Speleologia Slovaca, 1. Liptovský Mikuláš, Správa slovenských jaskýň, 2008. ISBN 978-80-8064-330-0, 168 p

    Google Scholar 

  • Goldscheider, N, Drew, D (Eds.) (2007) Methods in Karst Hydrogeology. Taylor & Francis, London, 264 pp

    Google Scholar 

  • IAEA (2002) Water and Environment Newsletter of the Isotope Hydrology Section, International Atomic Energy Agency. Issue No.16, November 2002: 5

    Google Scholar 

  • IAEA (2013) International Atomic Energy Agency. Global Network of Isotopes in Precipitation. Water Resources Programme – Global Network of Isotopes in Precipitation. Retrieved from http://wwwnaweb.iaea.org/napc/ih/IHS_resources

  • Kováčová, E, Malík, P, Švasta, J, Bahnová, N, Pažická, A, Bajtoš, P, Grolmusová, Z (2017) Priestorové zmeny distribúcie mikroklimatických parametrov počas letného režimu prúdenia vzduchu v Krásnohorskej jaskyni [Spatial changes of distribution of microclimatic parameters during the summer ventilation mode in Krásnohorská Cave (Slovak Karst Mts., Slovakia); in Slovak with English summary]. Slovenský kras - Acta Carsologica Slovaca 55(1): 81 102

    Google Scholar 

  • Kronome, B. Boórová, D (2016) Geologická stavba Silickej planiny pri Krásnohorskej Dlhej Lúke [Geological structure of the Silická planina Plateau near the Krásnohorská Dlhá Lúka; in Slovak with English summary]. Geologické práce, Správy (129):55 78

    Google Scholar 

  • Malík, P, Gregor, M, Švasta, J, Haviarová D (2011) Interpretácia meraní teploty a mernej elektrickej vodivosti vody v profile podzemného vodného toku Krásnohorskej jaskyne. Slovenský kras/ Acta carsologica Slovaca, 49/1, Liptovský Mikuláš, 41–55

    Google Scholar 

  • Malík, P, Gregor, M, Černák, R, Bottlik, F, Šutarová, B, Otruba M (2014) Stupeň skrasovatenia horninového prostredia severného okraja Silickej planiny na základe analýzy výtokových čiar. Podzemná voda 20(2), 2014, Slovenská asociácia hydrogeológov, Bratislava, 128 141

    Google Scholar 

  • McGuire, KJ, McDonnell, JJ (2006) A review and evaluation of catchment transit time modelling. Journal of Hydrology 330(2006):543 563

    Article  Google Scholar 

  • Mello, J, Elečko, M, Pristaš, J, Reichwalder, P, Snopko, L, Vass, D, Vozárová, A (1996) Geologická mapa Slovenského krasu 1: 50 000. Ministerstvo životného prostredia, Geologický služba Slovenskej republiky, Bratislava. Map sheet at a scale of 1: 50 000

    Google Scholar 

  • Mudarra, M, Andreo, B, Barbera, JA, Mudry, J (2013) Hydrochemical dynamics of TOC and NO3- contents as natural tracers of infiltration in karst aquifers. Environmental Earth Sciences 71(2):507 523

    Article  Google Scholar 

  • Orvan, J, Vrábľová, M (1986) Rožňava - Horný Vrch, predbežný hydrogeologický prieskum. IHGP Žilina. Manuscript – archive of Geofond, ŠGÚDŠ Bratislava, arch. No. 63001, 69 p

    Google Scholar 

  • Roda, Š (1964) Jaskyňa Buzgó. Krásy Slovenska, 29, 8, Bratislava, 181 182

    Google Scholar 

  • Roda, Š (1966) Je najvyšší na svete? Krásy Slovenska, 43, 7, Bratislava, 258–259

    Google Scholar 

  • Roda, Š, Roda, Š ml., Ščuka, J (1986) Aplikácia fraktálnej analýzy na interpretáciu stopovacích skúšok. Slovenský kras, 24, Liptovský Mikuláš, 61–75

    Google Scholar 

  • Skřivánek, F (1965) Objev jeskyně Buzgó v Jihoslovenském krasu. Československý kras, 16, Praha, 139 p

    Google Scholar 

  • Stankovič, J (2003) Mapa Krásnohorskej jaskyne. Archív Štátnej ochrany prírody – Správy slovenských jaskýň Liptovský Mikuláš, map sheet

    Google Scholar 

  • Stankovič, J, Cílek, V (eds.), Bruthans, J, Cílek, V, Gaál, Ľ, Kovács Á, Rozložník, M, Stankovič, J, Schmelzová, R, Zeman, O, Kováč, Ľ, Mock, A, Ľuptáčik, P, Hudec, I, Nováková, A, Košel, V, Fenďa P (2005) Krásnohorská jaskyňa Buzgó. Speleoklub Minotaurus, Regionálna rozvojová agentúra Rožňava, 150 p

    Google Scholar 

  • Zwahlen, F (ed) (2004) Vulnerability and risk mapping for the protection of carbonate (karst) aquifers. COST Action 620 Final Report. Office for Official Publications of the European Communities, Luxembourg, 2004–XVIII, pp. 297

    Google Scholar 

Download references

Acknowledgements

The results of this study could be obtained thanks to the project, coordinated by the European Commission as LIFE11ENV/SK/001023, entitled “Implementation of Sustainable Groundwater Use in the Underground Karst System of the Krásnohorská jaskyňa Cave” (acronym: KRASCAVE). The aim of this the project was to reduce the risk of contamination of drinking water in the underground karst ecosystem Krásnohorská cave through the implementation of innovation activities; the outputs of the project should also serve to reduce the risk of environmental impairment fragile ecosystems, depending on the quantity and quality groundwater. In the KRASCAVE project, the State Geological Institute of Dionýz Štúr Bratislava was acting as coordinating beneficiary and civic association Envi Slovakia Bratislava as associated beneficiaries. In addition to the European Commission, also the Ministry of Environment of Slovak Republic participated in the project co-financing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Malík .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Malík, P., Michalko, J., Pažická, A., Máša, B., Stankovič, J. (2020). Detailed Water Quality Monitoring at Various Points of the Krásnohorská Cave System (Slovakia). In: Bertrand, C., Denimal, S., Steinmann, M., Renard, P. (eds) Eurokarst 2018, Besançon. Advances in Karst Science. Springer, Cham. https://doi.org/10.1007/978-3-030-14015-1_23

Download citation

Publish with us

Policies and ethics