Skip to main content

Defining a Stretching and Alignment Aware Quality Measure for Linear and Curved 2D Meshes

  • Chapter
  • First Online:
27th International Meshing Roundtable (IMR 2018)

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 127))

Included in the following conference series:

Abstract

We define a regularized shape distortion (quality) measure for curved high-order 2D elements on a Riemannian plane. To this end, we measure the deviation of a given 2D element, straight-sided or curved, from the stretching and alignment determined by a target metric. The defined distortion (quality) is suitable to check the validity and the quality of straight-sided and curved elements on Riemannian planes determined by constant and point-wise varying metrics. The examples illustrate that the distortion can be minimized to curve (deform) the elements of a given high-order (linear) mesh and try to match with curved (linear) elements the point-wise alignment and stretching of an analytic target metric tensor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Alauzet, A. Loseille, A decade of progress on anisotropic mesh adaptation for computational fluid dynamics. Comput. Aided Des. 72(1), 13–39 (2016)

    Article  MathSciNet  Google Scholar 

  2. C. Gruau, T. Coupez, 3d Tetrahedral, unstructured and anisotropic mesh generation with adaptation to natural and multidomain metric. Comput. Methods Appl. Mech. Eng. 194(48–49), 4951–4976 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. P. Frey, F. Alauzet, Anisotropic mesh adaptation for cfd computations. Comput. Methods Appl. Mech. Eng. 194(48–49), 5068–5082 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Yano, D.L. Darmofal, An optimization-based framework for anisotropic simplex mesh adaptation. J. Comput. Phys. 231(22), 7626–7649 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Loseille, F. Alauzet, Continuous mesh framework part i: well-posed continuous interpolation error. SIAM J. Numer. Anal. 49(1), 38–60 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. T. Coupez, L. Silva, E. Hachem, Implicit boundary and adaptive anisotropic meshing, in New Challenges in Grid Generation and Adaptivity for Scientific Computing (Springer, Cham, 2015), pp. 1–18

    MATH  Google Scholar 

  7. F. Hecht, Bamg: bidimensional anisotropic mesh generator. User Guide. INRIA, Rocquencourt (1998)

    Google Scholar 

  8. A. Loseille, R. Lohner, Cavity-based operators for mesh adaptation, in 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2013, p. 152

    Google Scholar 

  9. A. Loseille, Metric-orthogonal anisotropic mesh generation. Procedia Eng. 82, 403–415 (2014)

    Article  Google Scholar 

  10. O. Sahni, X.J. Luo, K.E. Jansen, M.S. Shephard, Curved boundary layer meshing for adaptive viscous flow simulations. Finite Elem. Anal. Des. 46(1), 132–139 (2010)

    Article  MathSciNet  Google Scholar 

  11. P.-O. Persson, J. Peraire, Curved mesh generation and mesh refinement using lagrangian solid mechanics, in Proceeding of 47th AIAA, 2009

    Google Scholar 

  12. T. Toulorge, C. Geuzaine, J.-F. Remacle, J. Lambrechts, Robust untangling of curvilinear meshes. J. Comput. Phys. 254, 8–26 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Gargallo-Peiró, X. Roca, J. Peraire, J. Sarrate, Inserting curved boundary layers for viscous flow simulation with high-order tetrahedra, in Research Notes, 22nd International Meshing Roundtable (Springer International Publishing, Cham, 2013)

    Google Scholar 

  14. A. Gargallo-Peiró, X. Roca, J. Peraire, J. Sarrate, Optimization of a regularized distortion measure to generate curved high-order unstructured tetrahedral meshes. Int. J. Numer. Methods Eng. 103, 342–363 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. D. Moxey, M.D. Green, S.J. Sherwin, J. Peiró, An isoparametric approach to high-order curvilinear boundary-layer meshing. Comput. Methods Appl. Mech. Eng. 283, 636–650 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Fortunato, P-O. Persson, High-order unstructured curved mesh generation using the winslow equations. J. Comput. Phys. 307, 1–14 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Gargallo-Peiró, G. Houzeaux, X. Roca, Subdividing triangular and quadrilateral meshes in parallel to approximate curved geometries. Procedia Eng. 203, 310–322 (2017)

    Article  Google Scholar 

  18. D. Moxey, D. Ekelschot, Ü. Keskin, S.J. Sherwin, J. Peiró, High-order curvilinear meshing using a thermo-elastic analogy. Comput. Aided Des. 72, 130–139 (2016)

    Article  Google Scholar 

  19. O. Coulaud, A. Loseille, Very high order anisotropic metric-based mesh adaptation in 3d. Procedia Eng. 163, 353–365 (2016); Proceedings of the 25th International Meshing Roundtable

    Article  Google Scholar 

  20. T. Coupez, On a basis framework for high order anisotropic mesh adaptation, in Research Note of the 26th International Meshing Roundtable (2017)

    Google Scholar 

  21. J. Marcon, M. Turner, D. Moxey, S.J. Sherwin, J. Peiró, A variational approach to high-order r-adaptation. in IMR26, 2017

    Google Scholar 

  22. W. Huang, Y. Wang, Anisotropic mesh quality measures and adaptation for polygonal meshes (2015), https://arxiv.org/abs/1507.08243

  23. W. Huang, Measuring mesh qualities and applications to variational mesh adaptation. SIAM J. Sci. Comput. 26(5), 1643–1666 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. X. Roca, A. Gargallo-Peiró, J. Sarrate, Defining quality measures for high-order planar triangles and curved mesh generation, in Proceedings of 20th International Meshing Roundtable (Springer International Publishing, Cham, 2012), pp. 365–383

    Google Scholar 

  25. P.M. Knupp, Algebraic mesh quality metrics. SIAM J. Numer. Anal. 23(1), 193–218 (2001)

    MathSciNet  MATH  Google Scholar 

  26. A. Gargallo-Peiró, X. Roca, J. Peraire, J. Sarrate, Distortion and quality measures for validating and generating high-order tetrahedral meshes. Eng. Comput. 31, 423–437 (2015)

    Article  MATH  Google Scholar 

  27. A. Gargallo-Peiró, X. Roca, J. Peraire, J. Sarrate, A distortion measure to validate and generate curved high-order meshes on CAD surfaces with independence of parameterization. Int. J. Numer. Methods Eng. 106(13), 1100–1130 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Gargallo-Peiró, E. Ruiz-Gironés, X. Roca, J. Sarrate, On curving high-order hexahedral meshes, in 24th International Meshing Roundtable (IMR24), October 11–14, 2014, Austin, TX (Elsevier, Amsterdam, 2015), pp. 1–5

    Google Scholar 

  29. L.V. Branets, V.A. Garanzha, Distortion measure of trilinear mapping. application to 3-d grid generation. Numer. Linear Algebra Appl. 9(6–7), 511–526 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. E.J. López, N.M. Nigro, M.A. Storti, Simultaneous untangling and smoothing of moving grids. Int. J. Numer. Methods Eng. 76(7), 994–1019 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. J.M. Escobar, E. Rodríguez, R. Montenegro, G. Montero, J.M. González-Yuste. Simultaneous untangling and smoothing of tetrahedral meshes. Comput. Methods Appl. Mech. Eng. 192(25), 2775–2787 (2003)

    Article  MATH  Google Scholar 

  32. A. Gargallo-Peiró, Validation and generation of curved meshes for high-order unstructured methods. PhD thesis, Universitat Politècnica de Catalunya, 2014

    Google Scholar 

  33. P.C. Caplan, R. Haimes, D.L. Darmofal, M.C. Galbraith, Anisotropic geometry-conforming d-simplicial meshing via isometric embeddings. Procedia Eng. 203, 141–153 (2017); 26th International Meshing Roundtable.

    Article  Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 715546. This work has also received funding from the Generalitat de Catalunya under grant number 2017 SGR 1731. The work of X. Roca has been partially supported by the Spanish Ministerio de Economía y Competitividad under the personal grant agreement RYC-2015-01633.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xevi Roca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aparicio-Estrems, G., Gargallo-Peiró, A., Roca, X. (2019). Defining a Stretching and Alignment Aware Quality Measure for Linear and Curved 2D Meshes. In: Roca, X., Loseille, A. (eds) 27th International Meshing Roundtable. IMR 2018. Lecture Notes in Computational Science and Engineering, vol 127. Springer, Cham. https://doi.org/10.1007/978-3-030-13992-6_3

Download citation

Publish with us

Policies and ethics