Skip to main content

A Construction of Anisotropic Meshes Based on Quasi-Conformal Mapping

  • Chapter
  • First Online:
  • 661 Accesses

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 127))

Abstract

In this paper we discuss an algorithm to generate anisotropic mesh based on metric tensors. We transform this problem to finding a quasi conformal mapping f defined on an isotropic mesh, such that the image of f is an anisotropic triangulation. According to the metric tensors, the Beltrami coefficients of f can be calculated, then we use discrete Yamabe flow to construct f. The topology of the original triangulation will be updated if necessary, while the number of vertices won’t be changed during the process. We also use our method to compute the intersection of functions, and experiments show that the interpolation functions on anisotropic meshes have less errors than the interpolation functions on isotropic mesh.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Available in FreeFEM++ (http://www.freefem.org).

  2. 2.

    http://www.wias-berlin.de/people/si/detri2.html.

References

  1. F.J. Bossen, P.S. Heckbert, A pliant method for anisotropic mesh generation, in 5th International Meshing Roundtable, Citeseer, 1996, pp. 63–74

    Google Scholar 

  2. G.D. Canas, S.J. Gortler, Surface remeshing in arbitrary codimensions. Vis. Comput. 22(9), 885–895 (2006)

    Article  Google Scholar 

  3. M.J. Castro-Diaz, F. Hecht, B. Mohammadi, O. Pironneau, Anisotropic unstructured mesh adaption for flow simulations. Int. J. Numer. Methods Fluids 25(4), 475–491 (1997)

    Article  MathSciNet  Google Scholar 

  4. L. Chen, J.-C. Xu, Optimal Delaunay triangulations. J. Comput. Math. 22(2), 299–308 (2004)

    MathSciNet  MATH  Google Scholar 

  5. L. Chen, P. Sun, J. Xu, Optimal anisotropic meshes for minimizing interpolation errors in l p-norm. Math. Comput. 76, 179–204 (2007)

    Article  MathSciNet  Google Scholar 

  6. F. Dassi, H. Si, A curvature-adapted anisotropic surface re-meshing method, in New Challenges in Grid Generation and Adaptivity for Scientific Computing, vol. 5, ed. by S. Perotto, L. Formaggia (Springer, Cham, 2015), pp. 19–41

    Google Scholar 

  7. F. Dassi, A. Mola, H. Si, Curvature-adapted remeshing of CAD surfaces. Procedia Eng. 82, 253–265 (2014)

    Article  Google Scholar 

  8. F. Dassi, H. Si, S. Perotto, T. Streckenbach, Anisotropic finite element mesh adaptation via higher dimensional embedding. Procedia Eng. 124, 265–277 (2015)

    Article  Google Scholar 

  9. C. Dobrzynski, P. Frey, Anisotropic delaunay mesh adaptation for unsteady simulations, in Proceedings of the 17th International Meshing Roundtable (Springer, Berlin, 2008), pp. 177–194

    Google Scholar 

  10. Q. Du, D. Wang, Anisotropic Centroidal Voronoi tessellations and their applications. SIAM J. Sci. Comput. 26(3), 737–761 (2005)

    Article  MathSciNet  Google Scholar 

  11. L. Formaggia, S. Perotto, New anisotropic a priori error estimates. Numer. Math. 89(4), 641–667 (2001)

    Article  MathSciNet  Google Scholar 

  12. P.-J. Frey, F. Alauzet, Anisotropic mesh adaptation for CFD computations. Comput. Methods Appl. Mech. Eng. 194(48–49), 5068–5082 (2005)

    Article  MathSciNet  Google Scholar 

  13. W. Huang, Mathematical principles of anisotropic mesh adaptation. Commun. Comput. Phys. Citeseer, 2006

    Google Scholar 

  14. B. Lévy, N. Bonneel, Variational anisotropic surface meshing with Voronoi parallel linear enumeration, in Proceedings of the 21st International Meshing Roundtable, 2012, pp. 349–366

    Chapter  Google Scholar 

  15. Y. Liu, W. Wang, B. Lévy, F. Sun, D.-M. Yan, L. Lu, C. Yang, On Centroidal Voronoi tessellation—energy smoothness and fast computation. ACM Trans. Graph. 28(4), 1–17 (2009)

    Article  Google Scholar 

  16. R. Löhner, J. Cebral, Generation of non-isotropic unstructured grids via directional enrichment. Int. J. Numer. Methods Eng. 49(1–2), 219–232 (2000)

    Article  Google Scholar 

  17. A. Loseille, F. Alauzet, Continuous mesh framework part I: well-posed continuous interpolation error. SIAM J. Numer. Anal. 49(1), 38–60 (2011)

    Article  MathSciNet  Google Scholar 

  18. A. Loseille, F. Alauzet, Continuous mesh framework part II: validations and applications. SIAM J. Numer. Anal. 49(1), 61–86 (2011)

    Article  MathSciNet  Google Scholar 

  19. F. Luo, Combinatorial Yamabe flow on surfaces. Commun. Contemp. Math. 6(05), 765–780 (2004)

    Article  MathSciNet  Google Scholar 

  20. D. Marcum, F. Alauzet, Aligned metric-based anisotropic solution adaptive mesh generation. Procedia Eng. 82, 428–444 (2014)

    Article  Google Scholar 

  21. S. Rippa, Long and thin triangles can be good for linear interpolation. SIAM J. Numer. Anal. 29(1), 257–270 (1992)

    Article  MathSciNet  Google Scholar 

  22. J.R. Shewchuk, What is a good linear element? Interpolation, conditioning, and quality measures, in Proceedings of 11th International Meshing Roundtable, Ithaca, New York, September 2002 (Sandia National Laboratories, Livermore, 2002), pp. 115–126

    Google Scholar 

  23. K. Shimada, A. Yamada, T. Itoh, et al., Anisotropic triangular meshing of parametric surfaces via close packing of ellipsoidal bubbles, in 6th International Meshing Roundtable, 1997, pp. 375–390

    Google Scholar 

  24. D.-M. Yan, K. Wang, B. Levy, L. Alonso, Computing 2D Periodic Centroidal Voronoi Tessellation, June 2011 (IEEE, Piscataway, 2011), pp. 177–184

    Google Scholar 

  25. X. Yin, M. Jin, F. Luo, X.D. Gu, Discrete curvature flows for surfaces and 3-manifolds, in Emerging Trends in Visual Computing (Springer, Cham, 2009), pp. 38–74

    Book  Google Scholar 

  26. Z. Zhong, X. Guo, W. Wang, B. Lévy, F. Sun, Y. Liu, W. Mao, Particle-based anisotropic surface meshing. ACM Trans. Graph. 32(4), 1 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Lei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ren, Y., Lei, N., Si, H., Gu, X.D. (2019). A Construction of Anisotropic Meshes Based on Quasi-Conformal Mapping. In: Roca, X., Loseille, A. (eds) 27th International Meshing Roundtable. IMR 2018. Lecture Notes in Computational Science and Engineering, vol 127. Springer, Cham. https://doi.org/10.1007/978-3-030-13992-6_14

Download citation

Publish with us

Policies and ethics