Skip to main content

Atomic Physics and Spectroscopy

  • Chapter
  • First Online:
New Millennium Solar Physics

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 458))

  • 1380 Accesses

Abstract

The chemical composition or the elemental abundances in the Sun and stars are of fundamental importance for modeling the nucleosynthesis in cosmology, stellar evolution models, or EUV and soft X-ray emission spectra from solar and stellar atmospheres.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

(2.1) Photospheric Elemental Abundances

  • Allende Prieto, C., Lambert, D.L., and Asplund, M. 2002, A reappraisal of the solar photospheric C/O ratio ApJ 573, L137, [338 c, 22 c/y].

    Google Scholar 

  • Allende Prieto, C. 2016, Solar and stellar photospheric abundances, LRSP 13, 1, [2 c, 1 c/y].

    Google Scholar 

  • Asplund, M., Grevesse, N., Sauval, A.J., et al. 2004, Line formation in solar granulation. IV [O I], O I and OH lines and the photospheric O abundances, A&A 417, 751, [656 c, 49 c/y].

    Google Scholar 

  • Asplund, M., Grevesse, N., and Sauval, A.J. 2005, The solar chemical composition, (eds., T.G.Barnes III and Frank N.Bash), Astronomical Society of the Pacific Conference Series Vol. 336, 25, [1507 c, 121 c/y].

    Google Scholar 

  • Asplund, M., Grevesse, N., Sauval, A.J. and Scott, P. 2009, The chemical composition of the Sun, ARAA 47, 481, [3260 c, 384 c/y].

    Google Scholar 

  • Basu, S. and Antia, H.M. 2004, Constraining solar abundances using helioseismology, ApJ 606, L85, [185 c, 14 c/y].

    Google Scholar 

  • Caffau, E., Ludwig, H.G., Steffen, M., et al. 2008, The photospheric solar oxygen project. I. Abundances analysis of atomic lines and influence of atmospheric models. A&A 488, 1031, [185 c, 19 c/y].

    Google Scholar 

  • Feldman, U. and Widing, K.G. 2003, Elemental abundances in the solar upper atmosphere derived by spectroscopic means, SSRv 107/3, 665, [84 c, 6 c/y].

    Google Scholar 

  • Grevesse, N., Asplund, M., and Sauval, A.J. 2007, The solar chemical composition, SSRv 130, 105, [389 c, 37 c/y].

    Google Scholar 

  • Grevesse, N., Scott, P., Asplund, M., et al. 2015, The elemental composition of the Sun, III. The heavy elements Cu to Th , A&A 573, A27, [82 c, 33 c/y].

    Google Scholar 

  • Laming, J.M. 2015, The FIP and inverse FIP effects in solar and stellar coronae, LRSP 12, 2, [55 c, 22 c/y].

    Google Scholar 

  • Lodders, K. 2003, Solar system abundances and condensation temperatures of the elements, ApJ 591, 1220, [2138 c, 147 c/y].

    Google Scholar 

  • Melendez, J., Asplund, M., Gustafsson, B., et al. 2009, The peculiar solar composition and its possible relation to planet formation, ApJ 704, L66, [193 c, 23 c/y].

    Google Scholar 

  • Scott, P., Grevesse, N., Asplund, et al. 2015a, The elemental composition of the Sun. I. The intermediate mass elements Na to Ca , A&A 573, A25, [92 c, 37 c/y].

    Google Scholar 

  • Scott, P., Asplund, M., Grevesse, N., et al. 2015b, The elemental composition of the Sun. II. The iron group elements Sc to Ni , A&A 573, A26, [116 c, 46 c/y].

    Google Scholar 

(2.2) The First-Ionization-Potential (FIP) Effect

  • Allende Prieto, C. 2016, Solar and stellar photospheric abundances, LRSP 13, 1, [2 c, 1 c/y].

    Google Scholar 

  • Aschwanden, M.J., Schrijver, C.J., Winebarger, A.R., et al. 2003, A new method to constrain the iron abundance from cooling delays in coronal loops, ApJ 588, L49, [10 c, 1 c/y].

    Google Scholar 

  • Asplund, M., Grevesse, N., Sauval, A.J., et al. 2004, Line formation in solar granulation. IV [O I], O I and OH lines and the photospheric O abundances, A&A 417, 751, [656 c, 49 c/y].

    Google Scholar 

  • Brooks, D.H. and Warren, H.P. 2011, Establishing a connection between active region outflows and the solar wind: Abundance measurements with EIS/Hinode ApJL 272, L13, [60 c, 9 c/y].

    Google Scholar 

  • Ciaravella, A., Raymond, J.C., Li, J., et al. 2002, Elemental abundances and post-coronal mass ejection current sheet in a very hot active region, ApJ 575, 1116, [104 c, 7 c/y].

    Google Scholar 

  • Doschek, G.A. and Warren, H.P. 2016, The mysterious case of the solar argon abundance near sunspots in flares, ApJ 825, 36, [11 c, 7 c/y].

    Google Scholar 

  • Drake, J.J. 2011, Neon insights from old solar X-rays: A plasma temperature dependence of the coronal neon content, ApJ 743, 22, [6 c, 1 c/y].

    Google Scholar 

  • Drake, J.J. and Testa, P. 2005, The solar model problem solved by the abundance of neon in nearby stars, Nature 436, Issue 7050, 525, [170 c, 14 c/y].

    Google Scholar 

  • Edgar, R.J. and Esser, R. 2000, Nonequilibrium ionization and first ionization potential effect diagnostics, ApJ 538, 167, [6 c, 0.4 c/y].

    Google Scholar 

  • Feldman, U. and Laming, J.M. 2000, Element abundances in the upper atmospheres of the Sun and stars: Update of observational results, Physica Scripta 61, 222, [164 c, 9 c/y].

    Google Scholar 

  • Feldman, U. and Widing, K.G. 2003 , Elemental abundances in the upper atmosphere derived by spectroscopic means, SSRv 107/3, 665, [84 c, 6 c/y].

    Google Scholar 

  • Feldman, U. and Widing, K.G. 2007, Spectroscopic measurement of coronal compositions, SSRv 130, 115, [18 c, 2 c/y].

    Google Scholar 

  • Ko, Y.K., Raymond, J.C., Li,J., et al. 2002, Solar and heliospheric observatory ultraviolet coronagraph spectrometer and Yohkoh Soft X-Ray Telescope observations of the high-temperature corona above an active region complex, ApJ 578, 979, [34 c, 2 c/y].

    Google Scholar 

  • Laming, J.M. and Feldman, U. 2001, The solar helium abundance in the outer corona determined from observations with SUMER/SOHO, ApJ 546, 552, [36 c, 2 c/y].

    Google Scholar 

  • Laming, J.M. and Feldman, U. 2003, The variability of the solar coronal helium abundance: Polar coronal holes compared to the Quiet Sun, ApJ 591, 1257, [28 c, 2 c/y].

    Google Scholar 

  • Laming, J.M. 2015, The FIP and inverse FIP effects in solar and stellar coronae, LRSP 12, 2, [33 c, 13 c/y].

    Google Scholar 

  • Landi, E., Feldman, U., and Doschek, G.A. 2007, Neon and oxygen absolute abundances in the solar corona, ApJ 659, 743, [29 c, 3 c/y].

    Google Scholar 

  • Phillips, K.J.H., Sylwester, J., Sylwester, B., and Landi, E. 2003, Solar flare abundances of potassium, argon, and sulphur, ApJ 589, L113, [35 c, 2 c/y].

    Google Scholar 

  • Phillips, K.J.H., Feldman, U., and Landi, E. 2008, Ultraviolet and X-ray Spectroscopy of the Solar Atmosphere, Cambridge Astrophysics Series Vol., 44, Cambridge University Press, Cambridge, [74 c, 8 c/y].

    Google Scholar 

  • Phillips, K.J.H., Sylwester, J., Sylwester, B., et al. 2010, The solar X-ray continuum measured by RESIK, ApJ 711, 179, [11 c, 2 c/y].

    Google Scholar 

  • Phillips, K.J.H. and Dennis, B.R. 2012, The solar flare iron abundance, ApJ 748, 52, [9 c, 2 c/y].

    Google Scholar 

  • Schmelz, J.T., Nasraoui, K., Roames, J.K., et al. 2005, Neon lights up a controversy: The solar Ne/O abundance, ApJ 634, L197, [68 c, 5 c/y].

    Google Scholar 

  • Schmelz, J.T., Reames, D.V., von Steiger, R. et al. 2012, Composition of the solar corona, solar wind, and solar energetic particles, ApJ 755, 33, [84 c, 15 c/y.

    Google Scholar 

  • Sylwester, J., Sylwester, B., Phillips, K.J.H., et al. 2010a, Highly ionized potassium lines in solar X-ray spectra and the abundance of potassium, ApJ 710, 804, [19 c, 3 c/y].

    Google Scholar 

  • Sylwester, J., Sylwester, B., Phillips, K.J.H., et al. 2010b, A solar spectroscopic absolute abundance of argon from RESIK, ApJ 720, 1721, [12 c, 2 c/y].

    Google Scholar 

  • Sylwester, B., Phillips, K.J.H., Sylwester, J., et al. 2011, The solar flare chlorine abundance from RESIK X-ray spectra, ApJ 738, 49, [11 c, 2 c/y].

    Google Scholar 

  • Uzzo, M., Ko, Y.K., Raymond, J.C. et al. 2003, Elemental abundances for the 1996 streamer belt, ApJ 585, 1062, [22 c, 2 c/y].

    Google Scholar 

  • Uzzo, M., Strachan, L., Vourlidas, A., et al. 2006, Physical properties of a 2003 April quiescent streamer, ApJ 645, 720, [14 c, 1 c/y].

    Google Scholar 

  • White, S.M., Thomas, R.J., Brosius, J.W., et al. 2000, The absolute abundance of iron in the solar corona, ApJ 534, L203, [29 c, 2 c/y].

    Google Scholar 

  • Widing, K.G., Landi, E., and Feldman, U. 2005, Coronal element comparison observed by SOHO/SUMER in the quiet Southeast and Northwest limb regions at 1.04 R , ApJ 622, 1211, [7 c, 0.6 c/y].

    Google Scholar 

  • Young, P.R. 2005, The element abundance FIP effect in the quiet Sun, A&A 439, 361, [19 c, 2 c/y].

    Google Scholar 

  • Young, P.R. 2018, Element abundance ratios in the Quiet Sun transition region, ApJ 855, 15, [5 c, 5 c/y].

    Google Scholar 

(2.3) The CHIANTI Atomic Database

  • Arnaud, K. and Rothenflug, R. 1985, An updated evaluation of recombination and ionization rates, A&AS 60, 425, [1150 c, 35 c/y].

    Google Scholar 

  • Arnaud, K. and Raymond, J. 1992, Iron ionization and recombination rates and ionization equilibrium, ApJ 398, 394, [648 c, 25 c/y].

    Google Scholar 

  • Aschwanden, M.J. and Boerner, P. 2011, Solar corona loop studies with AIA: I. Cross-sectional temperature structure, ApJ 732, 81, [78 c, 12 c/y].

    Google Scholar 

  • Bryans, P., Landi, E., and Savin, D.W. 2009, A new approach to analyzing solar coronal spectra and updated collisional ionization equilibrium calculations. II. Updated ionization rate coefficients, ApJ 691, 1540, [171 c, 20 c/y].

    Google Scholar 

  • Del Zanna, G., Storey, P.J., Badnell, N.R., et al. 2012, Atomic data for astrophysics: Fe X soft X-ray lines, A&A 541, A90, [29 c, 5 c/y].

    Google Scholar 

  • Del Zanna, G., Dere, K.P., Young, P.R., et al. 2015, CHIANTI - An atomic database for emission lines. Version 8, A&A 582, A56, [156 c, 62 c/y].

    Google Scholar 

  • Dere, K.P, Landi, E., Mason,H.E., et al. 1997, CHIANTI. An atomic database for emission lines, A&A 125, 149, [1207 c, 59 c/y].

    Google Scholar 

  • Dere, K.P., Landi, E., Young, P.R., et al. 2001, CHIANTI - An atomic database for emission lines. IV. Extension to X-ray wavelengths, ApJS 134, 331, [159 c, 10 c/y].

    Google Scholar 

  • Dere, K.P. 2007, Ionization rate coefficients for the elements hydrogen through zinc, A&A 466, 771, [89 c, 8 c/y].

    Google Scholar 

  • Dere, K.P., Landi, E., Young, P.R., et al. 2009, CHIANTI - An atomic database for emission lines. IX. Ionization rates, recombination rates, ionization equilibria for the elements hydrogen through zinc and updated atomic data, A&A 498, 915, [312 c, 37 c/y].

    Google Scholar 

  • Landi, E., Landini, M., Dere,K.P., et al. 1999, CHIANTI - An atomic database for emission lines. III. Continuum radiation and extension of the ion database, A&AS 135, 339, [95 c, 5 c/y].

    Google Scholar 

  • Landi, E., Feldman, U., and Dere, K.P. 2002, CHIANTI - An atomic database for emission lines. V. Comparison with an isothermal spectrum observed with SUMER, ApJS 139, 281, [91 c, 6 c/y].

    Google Scholar 

  • Landi, E. and Phillips, K.J.H. 2005, Spectral atlas of X-ray lines emitted during solar flares based on CHIANTI, ApJS 160, 286, [29 c, 2.3 c/y].

    Google Scholar 

  • Landi, E. and Phillips, K.J.H. 2006, CHIANTI - An atomic database for emission lines. VIII. Comparison with solar flare spectra from the Solar Maximum Mission Flat Crystal spectrometer, ApJS 166, 421, [26 c, 2 c/y].

    Google Scholar 

  • Landi, E., Del Zanna,G., Young, P.R., et al. 2006, CHIANTI - An atomic database for emission lines. VII. New Data for X-rays and other improvements, ApJS 162, 261, [376 c, 33 c/y].

    Google Scholar 

  • Landi,E. and Young, P.R. 2009, CHIANTI - An atomic database for emission lines. X. Spectral atlas of a cold feature observed with Hinode/EIS, ApJ 706, 1, [23 c, 3 c/y].

    Google Scholar 

  • Landi, E., Del Zanna, G., Young, P.R. 2012, CHIANTI - An atomic database for emission lines. XII. Version 7 of the database, ApJ 744, 99, [187 c, 34 c/y].

    Google Scholar 

  • Landi, E., Young, P.R., Dere, K.P., et al. 2013, CHIANTI - An atomic database for emission lines. XIII. Soft X-ray improvements and other changes, ApJ 763, 86, [248 c, 55 c/y].

    Google Scholar 

  • Mason, H.E., Del Zanna, G., Dere, K.P., et al. 2002, The CHIANTI atomic database and instrument calibration: A symbiosis, in The Radiometric Calibration of SOHO, ESA SR-002, (eds. A. Pauluhn, M.C.E. Huber, and R. von Steiger, p.271.

    Google Scholar 

  • Merts, A.L. and Torrey, M.D. 1963, Some analytic solutions of the Hartree-Fock equations by an iterative least-squares method, J. Chemical Physics 39/3, 694, [4 c, 0.1 c/y].

    Google Scholar 

  • Storey, P.J., Mason, H.E., and Young, P.R. 2000, Atomic data from the IRON Project. XL. Electron impact excitation of the Fe XIV EUV transitions, A&AS 141, 285, [32 c, 2 c/y].

    Google Scholar 

  • Storey, P.J. and Zeippen, C.J. 2001, Coronal Fe IX line intensities and electron density diagnostics, MNRAS 324, L7, [4 c, 0.2 c/y].

    Google Scholar 

  • Storey, P.J., Del Zanna, G., Mason, H.E., et al. 2005, Atomic data from the IRON Project, A&A 433, 717, [36 c, 3 c/y].

    Google Scholar 

  • Testa, P., Drake, J., and Landi, E. 2012, Testing EUV/X-ray atomic data for the Solar Dynamics Observatory (SDO), ApJ 745, 111, [30 c, 5 c/y].

    Google Scholar 

  • Young, P.R., Landi, E., and Thomas, R.J. 1998, CHIANTI - An atomic database for emission lines. II. Comparison with the SERTS-89 active region spectrum, A&A 329, 291, [105 c, 5 c/y].

    Google Scholar 

  • Young, P.R., Del Zanna, G., Landi, E., et al. 2003, CHIANTI - An atomic database for emission lines. VI. Proton rates and other improvements, ApJS 144, 135, [252 c, 17 c/y].

    Google Scholar 

  • Young, P.R. and Landi, E. 2009, CHIANTI - An atomic database for emission lines. XI. Extreme-ultraviolet emission lines of Fe VII, Fe VIII, and Fe IX observed by Hinode/EIS, ApJ 707, 173, [22 c, 3 c/y].

    Google Scholar 

(2.4) Solar Emission Line Spectroscopy

  • Avrett, E.H., and Loeser, R. 2008, Models of the solar chromosphere and transition region from SUMER and HRTS Observations: Formation of the Extreme-Ultraviolet Spectrum of Hydrogen, Carbon, and Oxygen, ApJS 175, 229, [152 c, 16 c/y].

    Google Scholar 

  • Bartoe, J.D.F., Brueckner, G.E., Purcell, J.D., et al. 1977, Extreme ultraviolet spectrograph ATM experiment S082B, Appl. Opt. 16, 879, [109 c, 3 c/y].

    Google Scholar 

  • Bonnet, R.M., Lemaire, P., Vial, J.C. et al. 1978, The LPSP instrument on OSO-8. II. - In-flight performance and preliminary results, ApJ 221, 1032, [78 c, 2 c/y].

    Google Scholar 

  • Brown, C.M., Feldman, U., Sheeley, J.F., et al. 2008, Wavelengths and intensities of spectral lines in the 171–211 Å ranges from five solar regions recorded by the EUV Imaging Spectrometer (EIS) on Hinode, ApJS 176, 511, [104 c, 11 c/y].

    Google Scholar 

  • Bruner, E.C.Jr. 1977, The University of Colorado OSO-8 spectrometer experiment. I. Introduction and optical design considerations Space Sci. Instrum. 3, 369, [19 c, 0.5 c/y].

    Google Scholar 

  • Culhane, J.L., Hiei, E., Doschek, G.A. et al. 1991, The Bragg Crystal Spectrometer (BCS) for SOLAR-A, SoPh 136, 89, [188 c, 7 c/y].

    Google Scholar 

  • Culhane, J.L., Harra, L.K., James, A.M., et al. 2007, The EUV Imaging Spectrometer (EIS) for Hinode, SoPh 243, 19, [591 c, 56 c/y].

    Google Scholar 

  • Curdt, W., Brekke, P., Feldman, U. et al. 2001, The SUMER spectral atlas of solar-disk features, A&A 375, 591, [201 c, 12 c/y].

    Google Scholar 

  • Curdt, W., Landi, E., and Feldman, U. 2004, The SUMER spectral atlas of solar coronal features, A&A 427, 1045, [67 c/y].

    Google Scholar 

  • Del Zanna, G. 2012, Benchmarking atomic data for the CHIANTI atomic database: Coronal lines observed by Hinode EIS, A&A 537, A38, [33 c, 6 c/y].

    Google Scholar 

  • De Pontieu, B., Title, A.M., Lemen, J.R., et al. 2014, The Interface Region Imaging Spectrograph (IRIS), SoPh 289, 2733, [336 c, 96 c/y].

    Google Scholar 

  • Doschek, G.A. 1983, Solar instruments on the P78-1 spacecraft, SoPh 86, 9, [39 c, 1 c/y].

    Google Scholar 

  • Doschek, G.A. and Feldman, U. 2010, Topical Review: The solar UV-X-ray spectrum from 1.5 to 2000 A, J. Phys. B: At. Mol. Opt, Phys. 43, 232001, [15 c, 2 c/y].

    Google Scholar 

  • Doschek, G.A., Warren, H.P., Mariska, J.T., et al. 2008, Flows and non-thermal velocities in solar active regions observed with the EIS on Hinode: A tracer of active region sources of heliospheric magnetic fields ? ApJ 686, 1362, [114 c, 12 c/y].

    Google Scholar 

  • Feldman, U. and Widing, K.G. 2007, Spectroscopic measurement of coronal compositions, SSRv 130, 115, [18 c, 2 c/y].

    Google Scholar 

  • Harder, J.W., Thuillier, G., Richard, E.C. et al. 2010, The SORCE SIM solar spectrum: Comparison with recent observations, SoPh 263, 3, [35 c, 5 c/y].

    Google Scholar 

  • Harrison, R.A., Sawyer, E.C., Carter, M.K. et al. 1995, The CDS for the SOHO, SoPh 162, 233, [567 c, 25 c/y].

    Google Scholar 

  • Kohl, J.L., Esser, R., Gardner, L.D. et al. 1995, The Ultraviolet Coronagraph Spectrometer (UVCS) for the Solar and Heliospheric Observatory, SoPh 162, 313, [350 c, 16 c/y].

    Google Scholar 

  • Kohl, J.L., Noci, G., Cranmer, S.R., et al. 2006, Ultraviolet spectroscopy of the extended corona, A&AR 13, 31, [118 c, 10 c/y].

    Google Scholar 

  • McKenzie, D.L., Landecker, P.B., Broussard, R.M. et al. 1980, Solar flare X-ray spectra between 7.8 and 23.0 Å ApJ 241, 409, [105 c, 3 c/y].

    Google Scholar 

  • Peter, H. 2010, Asymmetries of solar coronal extreme ultraviolet emission lines, A&A 521, A51, [58 c, 8 c/y].

    Google Scholar 

  • Phillips, K.J.H., Leibacher, J.W., Wolfson, C.J., et al. 1982, Solar flare X-ray spectra from the Solar Maximum Mission (SMM) Flat Crystal Spectrometer (FCS), ApJ 256, 774, [152 c, 4 c/y].

    Google Scholar 

  • Phillips, K.J.H., Feldman, U., and Landi, E. 2008, Ultraviolet and X-ray Spectroscopy of the Solar Atmosphere, Cambridge Astrophysics Series Vol., 44, Cambridge University Press, Cambridge, [74 c, 8 c/y].

    Google Scholar 

  • Rapley, C.G., Sylwester, J., and Phillips, K.J.H. 2017, New results from the Solar Maximum Mission/Bent Crystal Spectrometer, SoPh 292, 50, [1 c, 1 c/y].

    Google Scholar 

  • Reeves, E.M., Huber, M.C.E., and Timothy, J.G. 1977, Extreme UV spectroheliometer on the Apollo Telescope Mount (ATM), Appl. Opt. 16, 837, [102 c, 5 c/y].

    Google Scholar 

  • Tanaka, K. 1982, High-resolution solar flare X-ray spectra obtained with rotating spectrometers on the HINOTORI satellite, ApJ 254, L59, [105 c, 3 y/c].

    Google Scholar 

  • Tian, H., McIntosh, S.W., De Pontieu, B., et al. 2011, Two components of the coronal emission revealed by EUV spectroscopic observations, ApJ 738, 18, [63 c, 10 c/y].

    Google Scholar 

  • Tousey, R., Bartoe, J.D.F., Brueckner, G.E., and Purcell, J.D. 1977, Extreme ultraviolet spectroheliograph ATM experiment S082A, Appl. Opt. 16, 870, [142 c, 4 c/y].

    Google Scholar 

  • Wilhelm, K., Curdt, W., Marsch, E. et al. 1995, SUMER - Solar Ultraviolet Measurements of Emitted Radiation, SoPh 162, 189, [705 c, 31 c/y].

    Google Scholar 

  • Young, P.R., Del Zanna, G., Mason, H.E., et al. 2007, EUV emission lines and diagnostics observed with Hinode/EIS, PASJ 59, S857, [139 c, 13 c/y].

    Google Scholar 

  • Young, P.R., Watanabe, T., Hara, H., et al. 2009, High-precision density measurements in the solar corona. I. Analysis methods and results for Fe XII and Fe XIII, A&A 495, 587, [121 c, 14 c/y].

    Google Scholar 

  • Zhitnik, I.A., Kuzin, S.V., Oraevskii, V.N. et al. 1998, A spectral analysis of solar images in the range 180–210 Å with the RES-K spectroheliograph onboard the CORONAS-I satellite, Astron. Lett. 24, 819, [7 c, 0.4 c/y].

    Google Scholar 

  • Zhitnik, I.A., Kuzin, S.V., Urnov, A.M. et al. 2005, Extreme vacuum ultraviolet solar spectra obtained during the SPIRIT experiment aboard CORONAS-F: A catalog of lines in the range 280–330 Å, Astron. Lett. 31, 37, [10 c, 0.8 c/y].

    Google Scholar 

(2.5) Instrumental Temperature Response Functions

  • Aschwanden, M.J. and Boerner, P. 2011, Solar corona loop studies with AIA: I. Cross-sectional temperature structure, ApJ 732, 81, [78 c, 12 c/y].

    Google Scholar 

  • Boerner, P.F., Edwards, C., Lemen, J. et al. 2012, Initial calibration of the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO), SoPh 275, 41, [200 c, 36 c/y].

    Google Scholar 

  • Boerner, P.F., Testa, P., Warren, H., et al. 2014, Photometric and thermal cross-calibration of solar EUV instruments, SoPh 289, 2377, [31 c, 9 c/y].

    Google Scholar 

  • Brooks, D.H., Fischbacher, G.A., Fludra, A. et al. 2000, A study of opacity in SOHO-SUMER and SOHO-CDS spectral observations. I. Opacity deduction at the limb, A&A 357, 697, [12 c, 1 c/y].

    Google Scholar 

  • Brooks, D.H. and Warren, H.P. 2006, The intercalibration of SOHO EIT, CDS-NIS, and TRACE, ApJS 164, 202, [26 c, 2 c/y].

    Google Scholar 

  • Del Zanna, G., Bromage, B.J.I., Landi, E., et al. 2001, Solar EUV spectroscopic observations with SOHO/CDS. I. An in-flight calibration study, A&A 379, 708, [49 c, 3 c/y].

    Google Scholar 

  • Del Zanna, G., Andretta, V., Chamberlin, P.C. et al. 2010, The EUV spectrum of the Sun: long-term variations in the SOHO CDS NIS spectral responsivities, A&A 518, A49, [18 c, 2 c/y].

    Google Scholar 

  • Foster, A.R. and Testa, P. 2011, Fe IX calculations for the Solar Dynamics Observatory (SDO), ApJL 740, L52, [22 c, 3 c/y].

    Google Scholar 

  • Judge, P.G. 2010, Coronal emission lines as thermometers, ApJ 708, 1238, [19 c, 3 c/y].

    Google Scholar 

  • Kuin, N.P.M. and Del Zanna, G. 2007, The in-flight performance of the SOHO/CDS grazing incidence spectrometer, SoPh 242, 187, [4 c, 0.4 c/y].

    Google Scholar 

  • Lang, J., Brooks, D.H., Lanzafame, A.C. et al. 2007, The in-flight monitoring and validation of the SOHO CDS normal incidence spectrometer radiometric calibration, A&A 463, 339, [3 c, 0.3 c/y].

    Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., et al. 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO), SoPh 275, 17, [1445 c, 263 c/y].

    Google Scholar 

  • McMullin, D.R., Judge, D.L., Hilchenbach, M. et al. 2002, In-flight comparisons of solar EUV irradiance measurements provided by the CELIAS/SEM on SOHO, in ESA SR-002, (eds., A. Pauluhn, M.C.E. Huber, and R. von Steiger), p.135, [12 c, 1 c/y].

    Google Scholar 

  • O’Dwyer, O., Del Zanna G., Mason, H.E., et al. 2010, SDO/AIA response to coronal hole, quiet Sun, active region, and flare plasma, A&A 521, A21, [181 c, 24 c/y].

    Google Scholar 

  • Pauluhn, A., Ruedi, I., Solanki, S.K. et al. 2001, Intercalibration of SUMER and CDS on SOHO. II. SUMER detectors A and B and CDS NIS, Appl. Optics 40/34, 6292, [18 c, 1 c/y].

    Google Scholar 

  • Raftery, C.L., Bloomfield, D.S., Gallagher, P.T., et al. 2013, Temperature response of the 171 Å passband of the SWAP imager on PROBA2, with a comparison to TRACE, SOHO, STEREO, and SDO, SoPh 286, 111, [4 c, 1 c/y].

    Google Scholar 

  • Takeda, A. 2011, Characteristics of the re-calculated Yohkoh/SXT temperature response, SoPh 273, 295, [4 c, 1 c/y].

    Google Scholar 

  • Schmelz, J.T., Jenkins, B.S., and Kimble, J.A. 2013, Atmospheric Imaging Assembly (AIA) response functions: solving the Fe VIII problems with Hinode/EIS bright point data, SoPh 283, 325, [5 c, 1 c/y]

    Google Scholar 

  • Thomas, R.J. 2002, Underflight calibration of SOHO CDS by SERTS-97, in “The radiometric calibration of SOHO”, (eds. A. Pauluhn, M.C.E. Huber, and R. von Steiger), ESA SR-002, p.225, [5 c, 0.3 c/y].

    Google Scholar 

  • Tripathi, D., Del Zanna, G., Mason, H.E. et al. 2006, EIT and TRACE responses to flare plasma A&A 460, L53, [10 c, 1 c/y].

    Google Scholar 

  • Wang, T.J., Brosius, J.W., Thomas, R.J., et al. 2010, Absolute radiometric calibration of the EUNIS-06 170–205 Å channel and calibration update for Coronal Diagnostic Spectrometer (CDS) incidence spectrometer, ApJS 186, 222, [6 c, 1 c/y].

    Google Scholar 

  • Wang, T.J., Thomas, R,J., Brosius, J.W., et al. 2011, Underflight calibration of SOHO/ CDS and Hinode/EIS with EUNIS-07, ApJS 197, 32, [19 c, 3 c/y].

    Google Scholar 

  • White, S.M., Thomas, R.J., and Schwartz, R.A. 2005, Updated expressions for determining temperatures and emission measures from GOES soft X-ray measurements, SoPh 227, 231, [98 c, 8 c/y].

    Google Scholar 

(2.6) Differential Emission Measure Analysis Methods

  • Aschwanden, M.J. and Nightingale, R.W. 2005, Elementary loop structures in the solar corona analyzed from TRACE triple-filter images, ApJ 633, 499, [106 c, 8 c/y].

    Google Scholar 

  • Aschwanden, M.J. and Boerner, P. 2011, Solar corona loop studies with AIA: I. Cross-sectional temperature structure, ApJ 732, 81, [78 c, 12 c/y].

    Google Scholar 

  • Aschwanden,M.J., Boerner, P., Schrijver, C.J., et al. 2013, Automated temperature and emission measure analysis of coronal loops and active regions observed with the AIA on SDO, SoPh 283, 5, [73 c, 16 c/y].

    Google Scholar 

  • Aschwanden, M.J., Boerner, P., Caspi, A., et al. 2015, Benchmark test of differential emission measure codes and multi-thermal energies in solar active regions, SoPh 290, 2733, [8 c, 3 c/y].

    Google Scholar 

  • Cheung, M.C.M., Boerner, P., Schrijver, C.J., et al. 2015, Thermal diagnostics with the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO): A validated method for differential emission measure inversions, ApJ 807, 143, [17 c, 7 c/y].

    Google Scholar 

  • Goryaev, F.F., Parenti, S., Urnov, A.M., et al. 2010, An iterative method in a probabilistic approach of the spectral inversion problem. Differential emission measure from line spectra and broadband data, A&A 523, A44, [10 c, 1 c/y].

    Google Scholar 

  • Guennou, C., Auchère, F., Soubrie, E., et al. 2012a, On the accuracy of the differential emission measure diagnostics of solar plasmas. Application to SDO/AIA. I. Isothermal plasmas, ApJS 203, 25, [17 c, 3 c/y].

    Google Scholar 

  • Guennou, C., Auchère, F., Soubrie, E., et al. 2012b, On the accuracy of the differential emission measure diagnostics of solar plasmas. Application to SDO/AIA. II. Multithermal plasmas, ApJS 203, 26, [26 c, 5 c/y].

    Google Scholar 

  • Hannah, I.G. and Kontar, E.P. 2012, Differential emission measures from the regularized inversion of Hinode and SDO data, A&A 539, A146, [105 c, 19 c/y].

    Google Scholar 

  • Judge, P.G. 2010, Coronal emission lines as thermometers, ApJ 708, 1238, [19 c, 3 c/y].

    Google Scholar 

  • Kashyap, V., and Drake, J.J. 1998, Markov-Chain Monte Carlo reconstruction of emission measure distributions: Applications to solar extreme-ultraviolet spectra, ApJ 503, 450, [125 c, 6 c/y].

    Google Scholar 

  • Landi, E., Feldman, U., and Dere, K.P. 2002, A comparison between coronal emission lines from an isothermal spectrum observed with the coronal diagnostic spectrometer and CHIANTI emissivities, ApJ 574, 495, [23 c, 1 c/y].

    Google Scholar 

  • Landi, E., Reale, F., and Testa, P. 2012, Monte Carlo Markov chain DEM reconstruction of isothermal plasmas, A&A 538, A111, [16 c, 3 c/y].

    Google Scholar 

  • Noglik, J.B., and Walsh, R.W. 2007, Investigation of a color-color method to determine temperatures along coronal structures using TRACE data, ApJ 655, 1127, [10 c, 1 c/y].

    Google Scholar 

  • Weber, M.A., Schmelz, J.T., DeLuca, E.E., and Roames, J.K. 2005, Isothermal bias of the “filter ratio” method for observations of multithermal plasmas, ApJ 635, L101, [35 c, 3 c/y].

    Google Scholar 

  • Warren, H.P., Brooks, D.H., and Winebarger, A.R. 2011, Constraints on the heating of high-temperature active region loops: Observations from Hinode and the Solar Dynamics Observatory (SDO), ApJ 734, 90, [78 c, 12 c/y].

    Google Scholar 

(2.7) Multi-Thermal Energy

  • Aschwanden, M.J., Boerner, P., Schrijver, C.J., et al. 2013, Automated temperature and emission measure analysis of coronal loops and active regions observed with the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO), SoPh 283, 5, [73 c, 16 c/y].

    Google Scholar 

  • Aschwanden, M.J., Boerner, P., Caspi, A., et al. 2015, Benchmark test of differential emission measure codes and multi-thermal energies in solar active regions, SoPh 290, 2733, [8 c, 3 c/y].

    Google Scholar 

  • Testa, P., De Pontieu, B., Martinez-Syjkora, J., et al. 2012, Investigating the reliability of coronal emission measure distribution diagnostics using 3-D MHD simulations, ApJ 758, 54, [30 c, 5 c/y].

    Google Scholar 

(2.8) Density-Sensitive Line Ratio Diagnostics

  • De Pontieu, B., Title, A.M., Lemen, J.R., et al. 2014, The Interface Region Imaging Spectrograph (IRIS), SoPh 289, 2733, [336 c, 96 c/y].

    Google Scholar 

  • Feldman, U., Landi, E., and Doschek, G.A. 2008, Line intensity ratios in the EIS range sensitive to electron densities in 107 K plasmas, ApJ 679, 843, [6 c, 1 c/y].

    Google Scholar 

  • Ko, Y.K., Doschek, G.A., Warren, H.P., et al. 2009, Hot plasma in nonflaring active regions observed by the EIS on Hinode, ApJ 697, 1956, [30 c, 4 c/y].

    Google Scholar 

  • Milligan, R.O. 2011, Spatially resolved nonthermal line broadening during the impulsive phase of a solar flare, ApJ 740, 70, [29 c, 5 c/y].

    Google Scholar 

  • Milligan, R.O., Kennedy, M.B., Mathioudakis, M., et al. 2012, Time-dependent density diagnostics of solar flare plasmas using SDO/EVE, ApJ 755, 16, [24 c, 4 c/y].

    Google Scholar 

  • Milligan, R.O. 2015, Extreme ultra-violet spectroscopy of the lower solar atmosphere during solar flares (Invited review), SoPh 290, 3399, [15 c, 6 c/y].

    Google Scholar 

  • Phillips, K.J.H., Feldman, U., and Landi, E. 2008, Ultraviolet and X-ray Spectroscopy of the Solar Atmosphere, Cambridge Astrophysics Series Vol., 44, Cambridge University Press, Cambridge, [74 c, 8 c/y].

    Google Scholar 

  • Polito, V., Del Zanna, G., Dudik, J., et al. 2016, Density diagnostics derived from the O IV and Si IV intercombination lines obsered by IRIS, A&A 594, 64, [8 c, 5 c/y].

    Google Scholar 

  • Warren, H.P. and Brooks, D.H. 2009, The temperature and density structure of the solar corona. I. Observations of the Quiet Sun with the EUV Imaging Spectrometer (EIS) on Hinode, ApJ 700, 762, [37 c, 4 c/y].

    Google Scholar 

  • Watanabe, T., Hara, H., Culhane, L., et al. 2007, Temperature and density structures of solar corona. A Test of iron line diagnostic capability of EIS instrument onboard Hinode, PASJ 59, 5669, [13 c, 1 c/y].

    Google Scholar 

  • Young, P.R., Watanabe, T., Hara, H., and Mariska, J.T. 2009, High precision density measurements in the solar corona. I. Analysis methods and results fro Fe XII and Fe XIII, A&A 495, 587, [121 c, 14 c/y].

    Google Scholar 

  • Young, P.R. 2009, New EUV Fe IX emission line identifications from Hinode/EIS, ApJL 691, L77, [28 c, 3 c/y].

    Google Scholar 

(2.9) Line Profile Diagnostics

  • Dadashi, N., Teriaca, L., and Solanki, S.K. 2011, The Quiet Sun average Doppler shift of coronal lines up to 2 MK, A&A 534, A90, [15 c, 2 c/y].

    Google Scholar 

  • Del Zanna, G. 2008, Flows in active region loops observed by Hinode EIS, A&A 481, L49, [115 c, 12 c/y].

    Google Scholar 

  • Doschek, G.A., Warren, H.P., Mariska, J.T., et al. 2008, Flows and nonthermal velocities in solar active regions observed with the EIS on Hinode: A tracer of active region sources of heliospheric magnetic fields?, ApJ 686, 1362, [114 c, 12 c/y].

    Google Scholar 

  • Peter, H. 2001, On the nature of the transition region from the chromosphere to the Corona of the Sun, A&A 374, 1108, [115 c, 7 c/y].

    Google Scholar 

  • Peter, H. 2010, Asymmetries of solar coronal extreme ultraviolet emission lines, A&A 521, A51, [56 c, 8 c/y].

    Google Scholar 

  • Phillips, K.J.H., Feldman, U., and Landi, E. 2008, Ultraviolet and X-ray Spectroscopy of the Solar Atmosphere, Cambridge Astrophysics Series Vol., 44, Cambridge University Press, Cambridge, [74 c, 8 c/y].

    Google Scholar 

  • Tomczyk, S., McIntosh, S.W., Keil, S.L., et al. 2007, Alfvén waves in the solar corona, Science 317, 1192, [391 c, 37 c/y].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aschwanden, M.J. (2019). Atomic Physics and Spectroscopy. In: New Millennium Solar Physics. Astrophysics and Space Science Library, vol 458. Springer, Cham. https://doi.org/10.1007/978-3-030-13956-8_2

Download citation

Publish with us

Policies and ethics