Skip to main content

Photobioreactors for Wastewater Treatment

  • Chapter
  • First Online:
Application of Microalgae in Wastewater Treatment

Abstract

The application of microalgae for wastewater treatment is attracting increasing attention of researchers because of the added potential of harvesting the generated algal biomass for deriving numerous useful products. The conventional systems, viz., algal ponds, are historically used for both wastewater treatment and biomass production at field scale. However, such systems are dependent on the prevalent environmental conditions and do not provide a sufficient level of control over the process, thus achieving a sub-optimal performance. Photobioreactors provide a better process control and optimization due to their design. However, their large-scale application is constrained by the overall economics, in addition to the increased complexity of the operation. The recent advancement in the technology, however, has addressed many of the associated difficulties in the large-scale photobioreactor application. This chapter provides an overview of the photobioreactor technology, the inherent complexity of their application, and the current technical advances leading to their large-scale application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adessi A, Torzillo G, Baccetti E, Philippis RD (2012) Sustained outdoor H2 production with Rhodopseudomonas palustris cultures in a 50 L tubular photobioreactor. Int J Hydrogen Energy 37:8840–8849

    CAS  Google Scholar 

  • An JY, Kim BW (2000) Biological desulfurization in an optical-fiber photobioreactor using an automatic sunlight collection system. J Biotechnol 80:35–44

    CAS  Google Scholar 

  • Arbib Z, Ruiz J, Diaz PA, Perez CG, Barragan J, Perales JA (2013) Effect of pH control by means of flue gas addition on three different photo-bioreactors treating urban wastewater in long-term operation. Ecol Eng 57:226–235

    Google Scholar 

  • Arceivala SJ, Asolekar SR (2007) Wastewater treatment for pollution control and reuse, 3rd edn. Tata McGraw-Hill Publishing Company Limited, New York

    Google Scholar 

  • Ashok V, Shriwastav A, Bose P (2014) Nutrient removal using algal-bacterial mixed culture. Appl Biochem Biotechnol 174(8):2827–2838

    CAS  Google Scholar 

  • Bilad MR, Discart V, Vandamme D, Foubert I, Muylaert K, Vankelecom IFJ (2014) Coupled cultivation and pre-harvesting of microalgae in a membrane photobioreactor (MPBR). Bioresour Technol 155:410–417

    CAS  Google Scholar 

  • Borowitzka MA (1996) Closed algal photobioreactors: design considerations for large-scale systems. J Mar Biotechnol 4:185–191

    CAS  Google Scholar 

  • Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321

    CAS  Google Scholar 

  • Briassoulis A, Panagakis P, Chionidis M, Tzenos D, Laos A, Tsinos C, Berberidis K, Jacobsen A (2010) An experimental helical-tubular photobioreactor for continuous production of Nannochloropsis sp. Bioresour Technol 101:6768–6777

    CAS  Google Scholar 

  • Camacho FG, Rodriguez JJG, Miron AS, Belarbi EH, Chisti Y, Grima EM (2011) Photobioreactor scale-up for a shear-sensitive dinoflagellate microalga. Process Biochem 46:936–944

    CAS  Google Scholar 

  • Campo JAD, Rodriguez H, Moreno J, Vargas MA, Rivas J, Guerrero MG (2001) Lutein production by Muriellopsis sp. in an outdoor tubular photobioreactor. J Biotechnol 85:289–295

    Google Scholar 

  • Carlozzi P, Sacchi A (2001) Biomass production and studies on Rhodopseudomonas palustris grown in an outdoor, temperature controlled, underwater tubular photobioreactor. J Biotechnol 88:239–249

    CAS  Google Scholar 

  • Chen HW, Yang TS, Chen MJ, Chang YC, Lin CY, Wang EIC, Ho CL, Huang KM, Yu CC, Yang FL, Wu SH, Lu YC, Chao LKP (2012) Application of power plant flue gas in a photobioreactor to grow Spirulina algae, and a bioactivity analysis of the algal water-soluble polysaccharides. Bioresour Technol 120:256–263

    CAS  Google Scholar 

  • Cheng L, Zhang L, Chen H, Gao C (2006) Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor. Sep Purif Technol 50:324–329

    CAS  Google Scholar 

  • Cohen E, Arad SM (1989) A closed system for outdoor cultivation of Porphyridium. Biomass 18:59–67

    Google Scholar 

  • Degen J, Uebele A, Retze A, Staiger US, Trosch W (2001) A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect. J Biotechnol 92:89–94

    CAS  Google Scholar 

  • Degrenne B, Pruvost J, Christophe G, Cornet JF, Cogne G, Legrand J (2010) Investigation of the combined effects of acetate and photobioreactor illuminated fraction in the induction of anoxia for hydrogen production by Chlamydomonas reinhardtii. Int J Hydrogen Energy 35:10741–10749

    CAS  Google Scholar 

  • Discart V, Bilad MR, Marbelia L, Vankelecom IFJ (2014) Impact of changes in broth composition on Chlorella vulgaris cultivation in a membrane photobioreactor (MPBR) with permeate recycle. Bioresour Technol 152:321–328

    CAS  Google Scholar 

  • Dubinsky Z, Rotem J (1974) Relations between algal populations and the pH of their media. Oecologia 16:53–60

    CAS  Google Scholar 

  • Garcia J, Mujeriego R, Hernandez-Marine M (2000) High rate algal pond operating strategies for urban wastewater nitrogen removal. J Appl Phycol 12(3–5):331–339

    CAS  Google Scholar 

  • Giannelli L, Torzillo G (2012) Hydrogen production with the microalga Chlamydomonas reinhardtii grown in a compact tubular photobioreactor immersed in a scattering light nanoparticle suspension. Int J Hydrogen Energy 37:16951–16961

    CAS  Google Scholar 

  • Gojkovic Z, Nores IG, Jacinto VG, Barrera TG, Ariza JLG, Marova I, Lobato CV (2013) Continuous production of selenomethionine-enriched Chlorella sorokiniana biomass in a photobioreactor. Process Biochem 48:1235–1241

    CAS  Google Scholar 

  • Honda R, Boonnorat J, Chiemchaisri C, Chiemchaisri W, Yamamoto K (2012) Carbon dioxide capture and nutrients removal utilizing treated sewage by concentrated microalgae cultivation in a membrane photobioreactor. Bioresour Technol 125:59–64

    CAS  Google Scholar 

  • Huang CC, Hung JJ, Peng SH, Chen CNN (2012) Cultivation of a thermo-tolerant microalga in an outdoor photobioreactor: influences of CO2 and nitrogen sources on the accelerated growth. Bioresour Technol 112:228–233

    CAS  Google Scholar 

  • Hulatt CJ, Thomas DN (2011) Energy efficiency of an outdoor microalgal photobioreactor sited at mid-temperate latitude. Bioresour Technol 102:6687–6695

    CAS  Google Scholar 

  • Itoiz ES, Grunewald CF, Gasol CM, Garces E, Alacid E, Rossi S, Rieradevall J (2012) Energy balance and environmental impact analysis of marine microalgal biomass production for biodiesel generation in a photobioreactor pilot plant. Biomass Bioenergy 39:324–335

    Google Scholar 

  • Ji CF, Legrand J, Pruvost J, Chen ZA, Zhang W (2010) Chracterization of hydrogen production by Platymonas Subcordiformis in torus photobioreactor. Int J Hydrogen Energy 35:7200–7205

    CAS  Google Scholar 

  • Kim HW, Vannela R, Rittmann BE (2013) Responses of Synechocystis sp. PCC 6803 to total dissolved solids in long-term continuous operation of a photobioreactor. Bioresour Technol 128:378–384

    CAS  Google Scholar 

  • Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J, Malcata FX, Langenhove HV (2010) Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol 28:371–380

    CAS  Google Scholar 

  • Kumar K, Sirasale A, Das D (2013) Use of image analysis tool for the development of light distribution pattern inside the photobioreactor for the algal cultivation. Bioresour Technol 143:88–95

    CAS  Google Scholar 

  • Lee YK (1986) Enclosed bioreactors for the mass cultivation of photosynthetic microorganisms: the future trend. Trends Biotechnol 4:186–189

    CAS  Google Scholar 

  • Li J, Xu NS, Su WW (2003) Online estimation of stirred-tank microalgal photobioreactor cultures based on dissolved oxygen measurement. Biochem Eng J 14:51–65

    CAS  Google Scholar 

  • Li ZY, Guo SY, Li L, Cai MY (2007) Effects of electromagnetic field on the batch cultivation and nutritional composition of Spirulina platensis in an air-lift photobioreactor. Bioresour Technol 98:700–705

    CAS  Google Scholar 

  • Lopes EJ, Franco TT (2013) From oil refinery to microalgal biorefinery. J CO2 Util 2:1–7

    Google Scholar 

  • Lopez PP, Garcia SG, Jeffryes C, Agathos SN, McHugh E, Walsh D, Murray P, Moane S, Feijoo G, Moreira MT (2014) Life cycle assessment of the production of the red antioxidant carotenoid astaxanthin by microalgae: from lab to pilot scale. J Clean Prod 64:332–344

    Google Scholar 

  • Lucker BF, Hall CC, Zegarac R, Kramer DM (2014) The environmental photobioreactor (ePBR): an algal culturing platform for simulating dynamic natural environments. Algal Res 6:242–249. https://doi.org/10.1016/j.algal.2013.12.007

    Article  Google Scholar 

  • Mallick N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals 15:377–390

    CAS  Google Scholar 

  • Michels MHA, Slegers PM, Vermue MH, Wijffels RH (2014) Effect of biomass concentration on the productivity of Tetraselmis suecica in a pilot-scale tubular photobioreactor using natural sunlight. Algal Res 4:12–18

    Google Scholar 

  • Morist A, Montesinos JL, Cusido JA, Godia F (2001) Recovery and treatment of Spirulina platensis cells cultured in a continuous photobioreactor to be used as food. Process Biochem 37:535–547

    Google Scholar 

  • Morita M, Watanabe Y, Saiki H (2001) Instruction of microalgal biomass production for practically higher photosynthetic performance using a photobioreactor. Trans IChemE 79:176–183

    CAS  Google Scholar 

  • Muller‐Feuga A, Pruvost J, Le Guédes R, Le Déan L, Legentilhomme P, Legrand J (2003) Swirling flow implementation in a photobioreactor for batch and continuous cultures of Porphyridium cruentum. Biotechnology and bioengineering, 84(5), 544–551

    Google Scholar 

  • OMEGA (2009–2012) https://www.nasa.gov/centers/ames/research/OMEGA/index.html

  • Oncel S, Kose A (2014) Comparison of tubular and panel type photobioreactors for bihydrogen production utilizing Chlamydomonas reinhardtii considering mixing time and light intensity. Bioresour Technol 151:265–270

    CAS  Google Scholar 

  • Ozkan A, Kinney K, Katz L, Berberoglu H (2012) Reduction of water and energy requirement of algae cultivation using an algae biofilm photobioreactor. Bioresour Technol 114:542–548

    CAS  Google Scholar 

  • Palmer CM (1974) Algae in American sewage stabilization’s ponds. Rev Microbiol (S-Paulo) 5:75–80

    Google Scholar 

  • Park JBK, Craggs RJ (2014) Effect of algal recycling rate on the performance of Pediastrum boryanum dominated wastewater treatment high rate algal pond. Water Sci Technol 70:1299–1306

    CAS  Google Scholar 

  • Park JBK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate alagl ponds for biofuel production. Bioresour Technol 102(1):35–42

    CAS  Google Scholar 

  • Pegallapati AK, Arudchelvam Y, Nirmalakhandan N (2012) Energy efficient photobioreactor configuration for algal biomass production. Bioresour Technol 126:266–273

    CAS  Google Scholar 

  • Pirouzi A, Nosrati M, Shojaosadati SA, Shakhesi S (2014) Improvement of mixing time, mass transfer, and power consumption in an external loop airlift photobioreactor for microalgae cultures. Biochem Eng J 87:25–32

    CAS  Google Scholar 

  • Raouf NA, Homaidan AAA, Ibraheem IBM (2012) Microalgae and wastewater treatment. Saudi J Biol Sci 19:257–275

    Google Scholar 

  • Richmond A (1987) The challenge confronting industrial microagriculture: high photosynthetic efficiency in large-scale reactors. Hydrobiology 151/152:117–121

    Google Scholar 

  • Rorrer GL, Mullikin RK (1999) Modeling and simulation of a tubular recycle photobioreactor for macroalgal cell suspension cultures. Chem Eng Sci 54:3153–3162

    CAS  Google Scholar 

  • Salas LML, Castrillo M, Martinez D (2013) Effects of dilution rates and water reuse on biomass and lipid production of Scenedesmus obliquus in a two-stage novel photobioreactor. Bioresour Technol 143:344–352

    Google Scholar 

  • Sato T, Usui S, Tsuchiya Y, Kondo Y (2006) Invention of outdoor close type photobioreactor for microalgae. Energy Convers Manag 47:791–799

    CAS  Google Scholar 

  • Scoma A, Giannelli L, Faraloni C, Torzillo G (2012) Outdoor H2 production in a 5-L tubular photobioreactor by means of a sulfur-deprived culture of the microalga Chlamydomonas reinhardtii. J Biotechnol 157:620–627

    CAS  Google Scholar 

  • Shi J, Podola B, Melkonian M (2014) Application of a prototype-scale Twin-Layer photobioreactor for effective N and P removal from different process stages of municipal wastewater by immobilized microalgae. Bioresour Technol 154:260–266

    CAS  Google Scholar 

  • Sierra E, Acien FG, Fernandez JM, Garcia JL, Gonzalez C, Molina E (2008) Characterization of a flat plate photobioreactor for the production of microalgae. Chem Eng J 138:136–147

    CAS  Google Scholar 

  • Singh RN, Sharma S (2012) Development of suitable photobioreactor for algae production-a review. Renew Sust Energ Rev 16:2347–2353

    CAS  Google Scholar 

  • Soletto D, Binaghi L, Ferrari I, Lodi A, Carvalho JCM, Zilli M, Converti A (2008) Effects of carbon dioxide feeding rate and light intensity on the fed-batch pulse-feeding cultivation of Spirulina platensis in helical photobioreactor. Biochem Eng J 39:369–375

    CAS  Google Scholar 

  • Solovchenko A, Pogosyan S, Chivkunova O, Selyakh I, Semenova I, Voronova E, Scherbakov P, Konyukhov I, Chekanov K, Kirpichnikov M, Lobakova E (2014) Phycoremediation of alcohol distillery wastewater waitha novel Chlorella sorokiniana strain cultivated in a photobioreactor monitored on-line via chlorophyll fluorescence. Algal Res 6:234–241. https://doi.org/10.1016/j.algal.2014.01.002

    Article  Google Scholar 

  • Song L, Qin JG, Shengqi S, Xu J, Clarke S, Shan Y (2012) Micronutrient requirements for growth and hydrocarbon production in the oil producing green alga Botryococcus braunii (Chlorophyta). PLoS One 7(7):e41459. https://doi.org/10.1371/journal.pone.0041459

    Article  CAS  Google Scholar 

  • Travieso L, Hall DO, Rao KK, Benitez F, Sanchez E, Borja R (2001) A helical tubular photobioreactor producing Spirulina in a semicontinuous mode. Int Biodeter Biodegr 47:151–155

    CAS  Google Scholar 

  • Trotta P (1981) A simple and inexpensive system for continuous monoxenic mass culture of marine microalgae. Aquaculture 22:383–387

    Google Scholar 

  • Velarde RR, Urbina EC, Melchor DJH, Thalasso F, Villanueva ROC (2010) Hydrodynamic and mass transfer characterization of a flat-panel airlift photobioreactor with high light path. Chem Eng Process 49:97–103

    Google Scholar 

  • Walter C, Steinau T, Gerbsch N, Buchholz R (2003) Monoseptic cultivation of phototrophic microorganisms—development and scale-up of a photobioreactor system with thermal sterilization. Biomolecular engineering, 20(4-6), 261–271

    Google Scholar 

  • Watanabe Y, Hall DO (1996) Photosynthetic CO2 conversion technologies using a photobioreactor incorporating microalgae-energy and material balances. Energy Convers Manag 37(6–8):1321–1326

    CAS  Google Scholar 

  • Watanabe Y, Saiki H (1997) Development of a photobioreactor incorporating Chlorella sp. for removal of CO2 in stack gas. Energy Convers Manag 38:S499–S503

    CAS  Google Scholar 

  • Yen HW, Chiang WC, Sun CH (2012) Supercritical fluid extraction of lutein from Scenedesmus cultured in an autotrophical photobioreactor. J Taiwan Inst Chem Eng 43:53–57

    CAS  Google Scholar 

  • Yuan X, Kumar A, Sahu AK, Ergas SJ (2011) Impact of ammonia concentration on Spirulina platensis growth in an airlift photobioreactor. Bioresour Technol 102:3234–3239

    CAS  Google Scholar 

  • Zhuang LL, Hu HY, Wu YH, Wang T, Zhang TY (2014) A novel suspended-solid phase photobioreactor to improve biomass production and separation of microalgae. Bioresour Technol 153:399–402

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amritanshu Shriwastav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ashok, V., Gupta, S.K., Shriwastav, A. (2019). Photobioreactors for Wastewater Treatment. In: Gupta, S.K., Bux, F. (eds) Application of Microalgae in Wastewater Treatment. Springer, Cham. https://doi.org/10.1007/978-3-030-13913-1_18

Download citation

Publish with us

Policies and ethics