Advertisement

National Status Reports

Conference paper
  • 318 Downloads

Abstract

In this section a summary of the national progress reports is given. GNSS4SWEC Management Committee (MC) members provided outline of the work conducted in their countries combining input from different partners involved. In the COST Action paticipated member from 32 COST countries, 1 Near Neighbour Country and 8 Intrantional Partners from Australia, Canada, Hong Kong and USA. The text reflects the state as of 1 January 2018.

References

  1. Ahmed, F., Gazeaux, J., Lebarbier, E., & Bock, O. (2015). Development of new segmentation algorithms for the homogenisation of GNSS IWV data. COST ES1206, 3rd WG meeting, Wroclaw, Poland, 29–30 September 2015.Google Scholar
  2. Alraddawi, D., Sarkissian, A., Keckhut, P., Bock, O., Noël, S., Bekki, S., Irbah, A., Meftah, M., & Claud, C. (2017). Comparison of total water vapour content in the Arctic derived from GPS, AIRS, MODIS and SCIAMACHY. Atmospheric Measurement Techniques Discussions.  https://doi.org/10.5194/amt-2017-195, in review.
  3. Bastin, S., Bock, O., Chiriaco, M., Bosser, P., Ahrens, B., Gallardo, C., Dominguez-Alonso, M., Roehrig, R., Li, L., Drobinski, P., & Parracho, A. (2017). Representation of integrated water vapor at different time scales and its impact on precipitation in MED-CORDEX simulations. 10th HyMeX workshop, 4–7 July 2017, Barcelona, Spain.Google Scholar
  4. Bennitt, G. V., & Jupp, A. (2012). Operational assimilation of GPS zenith total delay observations into the met Office numerical weather prediction models. Monthly Weather Review, 140(8), 2706–2719.Google Scholar
  5. Bennitt, G. V., Johnson, H. R., Weston, P. P., Jones, J., & Pottiaux, E. (2017). An assessment of ground-based GNSS Zenith total delay observation errors and their correlations using the Met Office UKV model. Quarterly Journal of Meteorological Society, 143(707), 2436–2447.Google Scholar
  6. Berckmans, J., Van Malderen, R., Pottiaux, E., & Pacione, R. (2017). Evaluation of the atmospheric water vapor content in the regional climate model ALARO-0 using GNSS observations from EPN Repro2, EMS2017-736, oral, EMS.Google Scholar
  7. Bock, O. (2016a). A reference IWV dataset combining IGS repro1 and ERA-Interim reanalysis for the assessment of homogenization algorithms. 3rd COST ES1206 workshop, 8–11 March 2016, Reykjavik, Island.Google Scholar
  8. Bock, O. (2016b). Post-processing of GNSS ZTD, COST ES1206 GNSS4SWEC Summer School, 29–31 August 2016, GFZ, Potsdam, Germany. Available at: ftp://ftp.gfz-potsdam.de/pub/GNSS/workshops/gnss4swec/Summer_School/D2/3_Bock_PostProc.pdf
  9. Bock, O., Bouin, M. N., Walpersdorf, A., Lafore, J. P., Janicot, S., Guichard, F., & Agusti-Panareda, A. (2007). Comparison of ground-based GPS precipitable water vapour to independent observations and NWP model reanalyses over Africa. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 133(629), 2011–2027.Google Scholar
  10. Bogusz, J., Klos, A., Teferle, N., Bock, O., Pottiaux, E., & Van Malderen, R. (2016). Autoregressive processes in homogenization of GNSS tropospheric data, G31B-1067, poster, AGU.Google Scholar
  11. Bollmeyer, C., Keller, J., Ohlwein, C., Wahl, S., Crewell, S., Friederichs, P., Hense, A., Keune, J., Kneifel, S., Pscheidt, I., Redl, S., & Steinke, S. (2015). Towards a high-resolution regional reanalysis for the European CORDEX domain. Quarterly Journal of the Royal Meteorological Society, 141(686), 1–15.CrossRefGoogle Scholar
  12. Bonafoni, S., & Biondi, R. (2015). The usefulness of the Global Navigation Satellite Systems (GNSS) in the analysis of precipitation events. Atmospheric Research, 167, 15–23.  https://doi.org/10.1016/j.atmosres.2015.07.011.CrossRefGoogle Scholar
  13. Bosser, P., & Bock, O. (2016). Screening of GPS ZTD estimates. 3rd COST ES1206 workshop, 8–11 March 2016, Reykjavik, Island.Google Scholar
  14. Brenot, H., Wautelet, G., Warnant, R., Nemeghaire, J., & Van Roozendael, M. (2014a). GNSS meteorology and impact on NRT position. Proceedings of the European navigation conference (ENC), Rotterdam, The Netherlands.Google Scholar
  15. Brenot, H., Walpersdorf, A., Reverdy, M., van Baelen, J., Ducrocq, V., Champollion, C., Masson, F., Doerflinger, E., Collard, P., & Giroux, P. (2014b). A GPS network for tropospheric tomography in the framework of the Mediterranean hydrometeorological observatory Cévennes-Vivarais (southeastern France). Atmospheric Measurement Techniques, 7, 553–578.  https://doi.org/10.5194/amt-7-553-2014.CrossRefGoogle Scholar
  16. Brenot, H., Errera, Q., Champollion, C., Verhoelst, T, Kumps, N., Van Malderen, R., & Van Roozendael M. (2014c). GNSS tomography and optimal geometrical setting to retrieve water vapour density of the neutral atmosphere, EGU2014-12204, oral, EGU.Google Scholar
  17. Brenot, H., Jones, J., Biondi, R., Clarisse, L., Delobbe, L., Clerbaux, N., & Van Roozendael, M. (2015). Propagation delays induced in GNSS signals during extreme conditions of the neutral atmosphere, G43C-03, invited oral, AGU.Google Scholar
  18. Brenot, H., Rohm, W., Kačmařík, M., Möller, G., Sá, A., Tondás, D., Rapant, L., Biondi, R., Manning, T., & Champollion, C. (2017a). Cross-validation of GNSS tomography models and methodological improvements using CORS network, EGU2017-7078, poster, EGU.Google Scholar
  19. Brenot, H., Caumont, O., Bosser, P., Biondi, R., Bock, O., Ducrocq, V., & Van Roozendael, M. (2017b). Interest of GNSS tomography for nowcasting in the frame of HyMeX, EGU2017-6979, poster, EGU.Google Scholar
  20. Brenot, H., Rohm, W., Kačmařík, M., Möller, G., Sá, A., Tondaś, D., Rapant, L., Biondi, R., Manning, T., & Champollion, C. (2018). Cross-validation of GPS tomography models and methodological improvements using CORS network. Atmospheric Measurement Techniques Discussions.  https://doi.org/10.5194/amt-2018-292. (in review, 2018).
  21. Caussinus, H., & Mestre, O. (2004). Detection and correction of artificial shifts in climate series. Journal of the Royal Statistical Society: Series C (Applied Statistics), 53, 405–425.  https://doi.org/10.1111/j.1467–9876.2004.05155.x.CrossRefGoogle Scholar
  22. Chen, B., & Liu, Z. (2014). Voxel-optimized regional water vapour tomography and comparison with radiosonde and numerical weather model. Journal of Geodesy, 88, 691–703.  https://doi.org/10.1007/s00190-014-0715-y.CrossRefGoogle Scholar
  23. Chen, B., & Liu, Z. (2016). Assessing the performance of troposphere tomographic modelling using multi-source water vapour data during Hong Kong’s rainy season from May to October 2013. Atmospheric Measurement Techniques, 9, 5249–5263.  https://doi.org/10.5194/amt-9-5249-2016.CrossRefGoogle Scholar
  24. Chen, L., Yu, Y., & Sun, D.-Z. (2013). Cloud and water vapour feedbacks to the El Niño warming: Are they still biased in CMIP5 models? Journal of Climate, 26, 4947–4961.CrossRefGoogle Scholar
  25. Chen, B., Liu, Z., Wong, W.-K., & Woo, W.-C. (2017). Detecting water vapour variability during heavy precipitation events in Hong Kong using the GPS tomographic technique. The Journal of Atmospheric and Oceanic Technology, 34, 1001–1019.  https://doi.org/10.1175/JTECH-D-16-0115.1.CrossRefGoogle Scholar
  26. Davis, J. L., Herring, T. A., Shapiro, I. I., Rogers, A. E. E., & Elgered, G. (1985). Geodesy by radio interferometry: Effects of atmospheric modelling errors on estimates of baseline length. Radio Science, 20, 1593–1607.CrossRefGoogle Scholar
  27. Dick, G., Douša, J., Kačmařík, M., Pottiaux, E., Zus, F., Brenot, H., Möller, G., Kaplon, J., Morel, L., & Hordyniec, P. (2016). Benchmark campaign of the COST action GNSS4SWEC: Main goals and achievements, G43C-04, invited oral, AGU.Google Scholar
  28. Ding, N., Zhang, S., & Zhang, Q. (2017). New parameterized model for GPS water vapour tomography. Annales de Geophysique, 35, 311–323.  https://doi.org/10.5194/angeo-35-311-2017.CrossRefGoogle Scholar
  29. Douša, J., Dick, G., Zus, F., Kačmařík, M., Václavovic, P., Brenot, H., Szafranek, K., Deng, Z., Brockmann, E., Teferle, N., Rohm, W., Santos, M., Zinas, N., Wielgosz, P., Nahmani, S., & Morel, L. (2015). Activities of GNSS4SWEC Working Group 1: Advanced GNSS processing techniques, EMS2015-455, poster, EMS.Google Scholar
  30. Douša, J., Dick, G., Kačmařík, M., Václavovic, P., Pottiaux, E., Zus, F., Brenot, H., Möller, G., Hinterberger, F., Pacione, R., Stuerze, A., Eben, K., Teferle, N., Ding, W., Morel, L., Kaplon, J., Hordyniec, P., & Rohm, W. (2016a). Achievements of GNSS4SWEC Working Group 1: Advanced GNSS processing techniques, EMS2016-705, poster, EMS.Google Scholar
  31. Douša, J., Dick, G., Kačmařík, M., Brožková, R., Zus, F., Brenot, H., Stoycheva, A., Möller, G., & Kaplon, J. (2016b). Benchmark campaign and case study episode in central Europe for development and assessment of advanced GNSS tropospheric models and products. Atmospheric Measurement Techniques, 9, 2989–3008.  https://doi.org/10.5194/amt-9-2989-2016.CrossRefGoogle Scholar
  32. Douša, J., Václavovic, P., Pottiaux, E., Hinterberger, F., Pacione, R., Kačmařík, M., Stuerze, A., & Teferle, N. (2016c). GNSS4SWEC real-time demonstration campaign: Development and assessment of future tropospheric products. IAG Commission 4th symposium, 4–7 September 2016, Wroclaw, Poland.Google Scholar
  33. Douša, J., Dick, G., Kačmařík, M., Václavovic, P., Pottiaux, E., Zus, F., Brenot, H., Möller, G., Hinterberger, F., Pacione, R., Stuerze, A., Eben, K., Teferle, N., Ding, W., Morel, L., Kaplon, J., Hordyniec, P., & Rohm, W. (2017). Working Group 1 “advanced GNSS processing techniques” of the COST Action GNSS4SWEC: Overview of main achievements, EGU2017-8440, oral, EGU.Google Scholar
  34. Elgered, G., Davis, J. L., Herring, T. A., & Shapiro, I. I. (1991). Geodesy by radio interferometry: Water vapour radiometry for estimation of the wet delay. Journal of Geophysical Research – Solid Earth 1978–2012, 96, 6541–6555.Google Scholar
  35. Gobin, A., Van Schaeybroeck, B., Termonia, P., Willems, P., Van Lipzig, N., Marbaix, P., van Ypersele, J.-P., Fettweis, X., De Ridder, K., Stavrakou, T., Luyten, P., & Pottiaux, E. (2016). Climate impacts on agricultural biomass production in the CORDEX.be project context, EGU2016-13711, poster, EGU.Google Scholar
  36. Gruber, C., Auer, I., & Böhm, R. (2009). Endbericht HOM-OP Austria, Aufbau und Installierung eines Tools zur operationellen Homogenisierung von Klimadaten mit Annexen: Gruber C., Auer I, 2009: Description of a procedure for the homogenization of daily temperature time series, Annex zu Endbericht HOM-OP-Austria.Google Scholar
  37. Guerova, G., Jones, J., Douša, J., Dick, G., de Haan, S., Pottiaux, E., Bock, O., Pacione, R., Elgered, G., Vedel, H., & Bender, M. (2016). Review of the state of the art and future prospects of the ground-based GNSS meteorology in Europe. Atmospheric Measurement Techniques, 9, 5385–5406.  https://doi.org/10.5194/amt-9-5385-2016.CrossRefGoogle Scholar
  38. Guo, J., Yang, F., Shi, J., & Xu, C. (2016). An optimal weighting method of Global Positioning System (GPS) troposphere tomography. The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(12), 1–8.  https://doi.org/10.1109/JSTARS.2016.2546316.CrossRefGoogle Scholar
  39. Haase, J., Ge, M., Vedel, H., & Calais, E. (2003). Accuracy and variability of GPS tropospheric delay measurements of water vapor in the western Mediterranean. Journal of Applied Meteorology, 42(11), 1547–1568.Google Scholar
  40. Held, I. M., & Soden, B. J. (2000). Water vapour feedback and global warming. Annual Review of Energy and the Environment, 25, 441–475.CrossRefGoogle Scholar
  41. Hinterberger, F. (2016). Influence of GPS satellite orbits and clock corrections on the estimation of single difference uncalibrated phase delays. Dissertation, Department of Geodesy and Geoinformation, TU Wien. http://repositum.tuwien.ac.at/obvutwhs/id/1553637
  42. Jiang, P., Ye, S. R., Liu, Y. Y., Zhang, J. J., & Xia, P. F. (2014). Near real-time water vapour tomography using ground-based GPS and meteorological data: long-term experiment in Hong Kong. Annales de Geophysique, 32, 911–923.  https://doi.org/10.5194/angeo-32-911-2014.CrossRefGoogle Scholar
  43. Jones, J., Guerova, G., Douša, J., de Haan, S., Bock, O., Dick, G., Pottiaux, E., & Pacione, R. (2014). COST Action ES1206: Advanced Global Navigation Satellite Systems tropospheric products for monitoring severe weather events and climate (GNSS4SWEC), EGU2014-14097, poster, EGU.Google Scholar
  44. Jones, J., Guerova, G., Douša, J., Dick, G., de Haan, S., Pottiaux, E., Bock, O., & Pacione, R. (2015a). COST Action ES1206: GNSS for severe weather and climate (GNSS4SWEC), EGU2015-9, poster, EGU.Google Scholar
  45. Jones, J., Guerova, G., Douša, J., Dick, G., de Haan, S., Pottiaux, E., Bock, O., & Pacione, R. (2015b). COST Action ES1206: GNSS for severe weather and climate (GNSS4SWEC), EMS2015-323, poster, EMS.Google Scholar
  46. Jones, J., Guerova, G., Douša, J., Dick, G., de Haan, S., Pottiaux, E., Bock, O., & Pacione, R. (2015c). COST Action ES1206: Advanced GNSS tropospheric products for monitoring severe weather events and climate (GNSS4SWEC), G31B-1050, poster, AGU.Google Scholar
  47. Jones, J., Guerova, G., Douša, J., Dick, G., De Haan, S., Pottiaux, E., Bock, O., & Pacione, R. (2015d) Satellite systems tropospheric products for monitoring severe weather events and climate (GNSS4SWEC). 5th international colloquium scientific and fundamental aspects of the Galileo Programme, 27–29 October 2015, Braunschweig, Germany.Google Scholar
  48. Jones, J., Guerova, G., Douša, J., Dick, G., De Haan, S., Pottiaux, E., Bock, O., & Pacione, R. (2015e). COST Action ES1206: Advanced Global Navigation Satellite Systems tropospheric products for monitoring severe weather events and climate (GNSS4SWEC) International Union of Geodesy and Geophysics, General Assembly, 22 June to 2 July 2015, Prague, Czech Republic.Google Scholar
  49. Jones, J., Guerova, G., Douša, J., Dick, G., de Haan, S., Pottiaux, E., Bock, O., & Pacione, R. (2016a). COST Action ES1206: Advanced GNSS tropospheric products for monitoring severe weather events and climate (GNSS4SWEC), EGU2016-2615, poster, EGU.Google Scholar
  50. Jones, J., Guerova, G., Douša, J., Dick, G., de Haan, S., Pottiaux, E., Bock, O., & Pacione, R. (2016b). COST Action ES1206: Advanced GNSS tropospheric products for monitoring severe weather events and climate (GNSS4SWEC), G31B-1050, poster, AGU.Google Scholar
  51. Jones, J., Guerova, G., Douša, J., De Haan, S., Bock, O., Dick, G., Pottiaux, E., & Pacione, R. (2016c). Advanced GNSS tropospheric products for monitoring severe weather events and climate (GNSS4SWEC), IGS Workshop, 8–12 February 2016, Sydney, Australia.Google Scholar
  52. Jones, J., Guerova, G., Douša, J, Dick, G., de Haan, S., Pottiaux, E., Bock, O., & Pacione R. (2017a). COST Action ES1206: Advanced GNSS tropospheric products for monitoring severe weather events and climate (GNSS4SWEC), EGU2017-96, poster, EGU.Google Scholar
  53. Jones, J., Guerova, G., Douša, J., Dick, G., de Haan, S., Pottiaux, E., Bock, O., & Pacione, R. (2017b). COST Action ES1206: Advanced GNSS tropospheric products for monitoring severe weather events and climate (GNSS4SWEC), EMS2017-51, oral, EMS.Google Scholar
  54. Jones, J., Guerova, G., Douša, J, Dick, G., de Haan, S., Pottiaux, E., Bock, O., & Pacione R. (2017c). COST Action ES1206: The current status and future of GNSS-meteorology in Europe, G31D-0933, poster, AGU.Google Scholar
  55. Kačmařík, M., Douša, J., Dick, G., Zus, F., Brenot, H., Möller, G., Pottiaux, E., Kapłon, J., Hordyniec, P., Václavovic, P., & Morel, L. (2017). Inter-technique validation of tropospheric slant total delays. Atmospheric Measurement Techniques, 10, 2183–2208.  https://doi.org/10.5194/amt-10-2183-2017.CrossRefGoogle Scholar
  56. Klos, A., Pottiaux, E., Van Malderen, R., Bock, O., & Bogusz, J. (2017a). Study on homogenization of synthetic GNSS-retrieved IWV time series and its impact on trend estimates with autoregressive noise, EGU2017-11706, poster, EGU.Google Scholar
  57. Klos, A., Van Malderen, R., Pottiaux, E., Bock, O., Bogusz, J., Chimani, B., Elias, M., Gruszczynska, M., Guijarro, J., Zengin Kazanci, S., & Ning, T. (2017b). Performance of various homogenization tools on a synthetic benchmark dataset of GPS and ERA-interim IWV differences. IAG-IASPEI Joint Scientific Assembly 2017, July 30–August 4, 2017, Kobe, Japan.Google Scholar
  58. Landskron, D., & Böhm, J. (2017). VMF3/GPT3: Refined discrete and empirical troposphere mapping functions. Journal of Geodesy.  https://doi.org/10.1007/s00190-017-1066-2.CrossRefGoogle Scholar
  59. Li, M., Li, W., Shi, C., Zhao, Q., Su, X., Qu, L., & Liu, Z. (2015). Assessment of precipitable water vapour derived from ground-based BeiDou observations with Precise Point Positioning approach. Advances in Space Research, 55, 150–162.  https://doi.org/10.1016/j.asr.2014.10.010.CrossRefGoogle Scholar
  60. Lindskog, M., Ridal, M., Thorsteinsson, S., & Ning, T. (2017). Data assimilation of GNSS zenith total delays from a Nordic Processing Centre. Chemical Physics, 17, 13983–13998.  https://doi.org/10.5194/acp-17-13983-2017.CrossRefGoogle Scholar
  61. Liu, Z., & Li, M. (2013). The first PPP-based GPS Water Vapour Real-Time Monitoring System in Pearl-River-Delta Region, China. In J. Sun, W. Jiao, H. Wu, & C. Shi (Eds.), China satellite navigation conference (CSNC) 2013 proceedings (pp. 71–87). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  62. Macke, A., Seifert, P., Baars, H., Barthlott, C., Beekmans, C., Behrendt, A., Bohn, B., Brück, M., Bühl, J., Crewell, S., Damian, T., Deneke, H., Düsing, S., Foth, A., Di Girolamo, P., Hammann, E., Heinze, R., Hirsikko, A., Kalisch, J., Kalthoff, N., Kinne, S., Kohler, M., Löhnert, U., Madhavan, B. L., Maurer, V., Muppa, S. H., Schween, J., Serikov, I., Siebert, H., Simmer, C., Späth, F., Steinke, S., Träumner, K., Trömel, S., Wehner, B., Wieser, A., Wulfmeyer, V., & Xie, X. (2017). The HD(CP)2 observational prototype experiment HOPE – An overview. Atmospheric Chemistry and Physics, 17, 4887–4914.  https://doi.org/10.5194/acp-17-4887-2017.CrossRefGoogle Scholar
  63. Mahfouf, J-F., Ahmed, F., Moll, P., & Teferle, F.N. (2015). Assimilation of zenith total delays in the AROME France convective scale model: a recent assessment. Tellus A, [S.l.], ISSN 1600-0870.  https://doi.org/10.3402/tellusa.v67.26106. Available at: http://www.tellusa.net/index.php/tellusa/article/view/26106. Accessed 9 Dec 2016.CrossRefGoogle Scholar
  64. Mendes, V. B. (1998). Modeling the neutral-atmosphere propagation delay in radiometric space techniques. Ph.D. dissertation, University of New Brunswick, Fredericton, NB, Canada.Google Scholar
  65. Mestre, O., Gruber, C., Prieur, C., Caussinus, H., & Jourdain, S. (2011). SPLIDHOM, a method for homogenization of daily temperature observations. Journal of Applied Meteorology and Climatology, 50, 2343–2358.  https://doi.org/10.1175/2011JAMC2641.1.CrossRefGoogle Scholar
  66. Mohanakumar, K. (2008). Stratosphere troposphere interactions: An introduction. New York: Springer.CrossRefGoogle Scholar
  67. Möller, G. (2017). Reconstruction of 3D wet refractivity fields in the lower atmosphere along bended GNSS signal paths. Dissertation, Department of Geodesy and Geoinformation, TU Wien. http://repositum.tuwien.ac.at/obvutwhs/id/2268559
  68. Möller, G., Wittmann, C., Yan, X., Umnig, E., Joldzic, N., & Weber, R. (2015). 3D ground based GNSS atmospheric tomography. Final report, FFG project GNSS-ATom (ID:840098).Google Scholar
  69. Morel, L., Pottiaux, E., Durand, F., Fund, F., Boniface, K., de Oliveira, P. S., Jr., & Van Baelen, J. (2015a). Validity and behaviour of tropospheric gradients estimated by GPS in Corsica. Advances in Space Research, 55(1), 135–149.  https://doi.org/10.1016/j.asr.2014.10.004.CrossRefGoogle Scholar
  70. Morel, L, Pottiaux, E., Durand, F., Fund, F., Follin, J.-M., Durand, S., Boniface, K., de Oliveira Jr, P. S., & Van Baelen, J. (2015b). Global validity and behaviour of tropospheric gradients estimated by GPS. International Union of Geodesy and Geophysics, General Assembly, 22 June–2 July 2015, Prague, Czech Republic.Google Scholar
  71. Muller, M., Homleid, M., Ivarsson, K.-I., Koltzow, M., Lindskog, M., Midtbo, K.-H., Andrae, U., Aspelien, T., Berggren, L., Bjorge, D., Dahlgren, P., Kristiansen, J., Randriamampianina, R., Ridal, M., & Vigne, O. (2017). AROME-MetCoOp: A Nordic convective-scale operational weather prediction model. Weather and Forecasting, 32, 609–627.  https://doi.org/10.1175/WAF-D-16-0099.1.CrossRefGoogle Scholar
  72. Nahmani S., & Bock, O. (2014). Sensitivity of GPS measurements and estimates during extreme meteorological events: The issue of stochastic constraints used for ZWD estimation in West Africa. Joint ES1206 MC and MC meeting, Golden Sands Resort, 11–12 September 2014, Varna, Bulgaria.Google Scholar
  73. Nahmani S., Rebischung, P., & Bock, O. (2016). Statistical modelling of ZWD in GNSS processing. 3rd ES1206 workshop, Rugbrauðsgerdin, 8–10 March 2016, Reykjavik, Iceland.Google Scholar
  74. Nahmani S., Rebischung, P., & Bock, O. (2017). Bayesian approach to apply optimal constraints on tropospheric parameters in GNSS data processing: Implications for meteorology. ES1206 final workshop, ESTEC, 21–23 February 2017, Noordwijk, Netherlands.Google Scholar
  75. Namaoui, H., Kahlouche, S., Belbachir, A.-H., Van Malderen, R., Brenot, H., & Pottiaux, E. (2017). GPS water vapour and its comparison with radiosondes and ERA-Interim reanalysis in Algeria. Advances in Atmospheric Sciences, 34(5), 623–634.CrossRefGoogle Scholar
  76. Niell, A. E., Coster, A. J., Solheim, F. S., Mendes, V. B., Toor, P. C., Langley, R. B., & Upham, C. A. (2001). Comparison of measurements of atmospheric wet delay by radiosonde, water vapour radiometer, GPS, and VLBI. The Journal of Atmospheric and Oceanic Technology, 18, 830–850.CrossRefGoogle Scholar
  77. Ning, T., Elgered, G., Willén, U., & Johansson, J. M. (2013). Evaluation of the atmospheric water vapour content in a regional climate model using ground-based GPS measurements. Journal of Geophysical Research, 118.  https://doi.org/10.1029/2012JD018053.Google Scholar
  78. Ning, T., Wang, J., Elgered, G., Dick, G., Wickert, J., Bradke, M., Sommer, M., Querel, R., & Smale, D. (2016a). The uncertainty of the atmospheric integrated water vapour estimated from GNSS observations. Atmospheric Measurement Techniques, 9, 79–92.  https://doi.org/10.5194/amt-9-79-2016.CrossRefGoogle Scholar
  79. Ning, T., Wickert, J., Deng, Z., Heise, S., Dick, G., Vey, S., & Schone, T. (2016b). Homogenized time series of the atmospheric water vapour content obtained from the GNSS reprocessed data. Journal of Climate, 29, 2443–2456.  https://doi.org/10.1175/JCLI-D-15-0158.1.CrossRefGoogle Scholar
  80. Nogherotto, R., Biondi, R., Leclair de Bellevue, J, & Brenot, H. (2017). Characterization of tropical cyclones in the South Indian Ocean by using GNSS observations, EGU2017-3287, poster, EGU.Google Scholar
  81. Pacione, R., Pace, B., de Haan, S., Vedel, H., Lanotte, R., & Vespe, F. (2011). Combination methods of tropospheric time series. Advances in Space Research, 47, 323–335.  https://doi.org/10.1016/j.asr.2010.07.021.CrossRefGoogle Scholar
  82. Pacione, R., Pace, B., & Bianco G. (2014). Homogeneously reprocessed ZTD long-term time series over Europe, EGU GA. http://meetingorganizer.copernicus.org/EGU2014/EGU2014-2945.pdf
  83. Pacione, R., Araszkiewicz, A., Brockmann, E., & Dousa, J. (2017a). EPN-Repro2: A reference tropospheric data set over Europe. Atmospheric Measurement Techniques, 10, 1689–1705.  https://doi.org/10.5194/amt-10-1689-2017. (licensed under CC BY 3.0, https://creativecommons.org/licenses/by/3.0/).CrossRefGoogle Scholar
  84. Pacione, R., Pottiaux, E., & The IAG JWG 4.3.8 Team. (2017b). GNSS tropospheric products for climate: Objectives and future plans, EGU2017-8332, poster, EGU.Google Scholar
  85. Parracho, A. (2017). Study of trends and variability of atmospheric integrated water vapour with climate models and observations from global GNSS network. PhD report from Université Pierre et Marie Curie, Paris, France.Google Scholar
  86. Parracho, A. C., Bock, O., & Bastin, S. (2018). Global IWV trends and variability in atmospheric reanalyses and GPS observations. Atmospheric Chemistry and Physics Discussions, 18, 16213–16237.  https://doi.org/10.5194/acp-2018-137, in review.CrossRefGoogle Scholar
  87. Pottiaux, E., & Bruyninx, C. (2016). GNSS-meteorology and GNSS-climate activities at ROB: Contribution to national projects, E-GVAP and COST Action ES1206 (GNSS4SWEC). 4th E-GVAP III joint expert team meeting, 6–0 December 2016, Copenhagen, Denmark.Google Scholar
  88. Pottiaux, E., & Pacione, R. (2016). The IAG Joint Working Group 4.3.8: GNSS tropospheric products for climate. IAG Commission 4th Symposium, 4–7 September 2016, Wroclaw, Poland.Google Scholar
  89. Pottiaux, E., Berckmans, J., & Bruyninx, C. (2014). Advanced multi-GNSS troposphere modeling for improved monitoring and forecasting of severe weather, EGU2014-11730, poster, EGU.Google Scholar
  90. Pottiaux, E., Douša, J., Václavovic, P., & Bruyninx, C. (2015). First results of the real-time multi-GNSS troposphere parameters demonstration campaign at the royal observatory of Belgium. International Union of Geodesy and Geophysics, General Assembly, 22 June–2 July 2015, Prague, Czech Republic.Google Scholar
  91. Sánchez Arriola, J., Lindskog, M., Thorsteinsson, S., & Bojarova, J. (2016). Variational bias correction of GNSS ZTD in the HARMONIE modeling system. Journal of Applied Meteorology and Climatology, 55, 1259–1276.  https://doi.org/10.1175/JAMC-D-15-0137.CrossRefGoogle Scholar
  92. Shi, J., Xu, C., Guo, J., & Gao, Y. (2015). Real-time GPS precise point positioning-based precipitable water vapour estimation for rainfall monitoring and forecasting. IEEE Transactions on Geoscience and Remote Sensing, 53, 3452–3459.  https://doi.org/10.1109/TGRS.2014.2377041.CrossRefGoogle Scholar
  93. Simeonov, T., Sidorov, D., Teferle, F. N., Milev, G., & Guerova, G. (2016). Evaluation of IWV from the numerical weather prediction WRF model with PPP GNSS processing for Bulgaria. Atmospheric Measurement Techniques Discussions.  https://doi.org/10.5194/amt-2016-152.
  94. Simeonov, T., Vey, S., Alshawaf, F., Dick, G., Guerova, G., Güntner, A., Hohmann, C., Lopez, E., Pottiaux, E., Trost, B., & Wickert, J. (2017). Monitoring of water cycle elements using GNSS geodetic receivers in North-East Germany at sub-daily resolution, EMS2017-28, poster, EMS.Google Scholar
  95. Steinke, S., Eikenberg, S., Loehnert, U., Dick, G., Klocke, D., Di Girolamo, P., & Crewell, S. (2015). Assessment of small-scale integrated water vapour variability during HOPE. Atmospheric Chemistry and Physics, 15, 2675–2692.  https://doi.org/10.5194/acpd-14-22837-2014.CrossRefGoogle Scholar
  96. Stepniak, K., Bock, O., & Wielgosz, P. (2018). Reduction of ZTD outliers through improved GNSS data processing and screening strategies. Atmospheric Measurement Techniques, 11, 1347–1361.  https://doi.org/10.5194/amt-11-1347-2018.CrossRefGoogle Scholar
  97. Termonia, P., Van Schaeybroeck, B., De Ridder, K., Fettweis, X., Gobin, A., Luyten, P., Marbaix, P., Pottiaux, E., Stavrakou, T., Van Lipzig, N., van Ypersele, J.-P., & Willems, P. (2016). CORDEX.be: COmbining regional climate downscaling EXpertise in Belgium, EGU2016-12252, EGU, poster.Google Scholar
  98. Termonia, P., Van Schaeybroeck, B., De Cruz, L., De Troch, R., Caluwaerts, S., Giot, O., Hamdi, R., Vannitsem, S., Willems, P., Tabari, H., Van Uytven, E., Hosseinzadehtalaei, P., Van Lipzig, N., Wouters, H., Vanden Broucke, S., van Ypersele, J.-P., Marbaix, P., Villanueva-Birriel, C., Fettweis, X., Wyard, C., Scholzen, C., Doutreloup, S., De Ridder, K., Gobin, A., Lauwaet, D., Stavrakou, T., Bauwens, M., Müller, J.-F., Luyten, P., Ponsar, S., Van den Eynde, D., & Pottiaux, E. (2018). The CORDEX.be initiative as a foundation for climate services in Belgium. Submitted to Climate Services 11, 49–61.Google Scholar
  99. Troller, M. (2004). GPS based determination of the integrated and spatially distributed water vapour in the troposphere. Zurich: Swiss Federal Institute of Technology Zurich.Google Scholar
  100. Van Malderen, R., Brenot, H., Pottiaux, E., Beirle, S., Hermans, C., De Mazière, M., Wagner, T., De Backer, H., & Bruyninx, C. (2014). A multi-site intercomparison of integrated water vapour observations for climate change analysis. Atmospheric Measurement Techniques, 7, 2487–2512.  https://doi.org/10.5194/amt-7-2487-2014.CrossRefGoogle Scholar
  101. Van Malderen, R., Pottiaux, E., Klos, A., Bock, O., Bogusz, J., Chimani, B., Elias, M., Gruszczyńska, M., Guijarro, J., Zengin Kazancı, S., & Ning, T. (2017a). The homogenization of GPS Integrated Water Vapour time series: Methodology and benchmarking the algorithms on synthetic datasets, EMS2017-496, oral, EMS.Google Scholar
  102. Van Malderen, R., Pottiaux, E., Klos, A., Bock, O., Bogusz, J., Chimani, B., Elias, M., Gruszczynska, M., Guijarro, J., Zengin Kazancı, S., & Ning, T. (2017b). Homogenizing GPS integrated water vapour time series: Methodology and benchmarking the algorithms on synthetic datasets. Proceedings of the ninth seminar for homogenization and quality control in climatological databases and fourth conference on spatial interpolation techniques in climatology and meteorology, Budapest, Hungary, 2017c, WMO, WCDMP-No. 845, edited by T. Szentimrey, M. Lakatos, L. Hoffmann, pp. 102–114 (http://www.wmo.int/pages/prog/wcp/wcdmp/wcdmp_series/WCDMP_85.pdf) pp. 104–116.
  103. Van Malderen, R., Pottiaux, E., Stankunavicius, G., Beirle, S., Legrand, J., Brenot, H., Wagner, T., De Backer, H., & Bruyninx, C. (2017c). A world-wide analysis of the time variability of integrated water vapour, based on ground-based GNSS and GOMESCIA satellite retrievals, and with reanalyses as auxiliary tools, EMS2017-547, oral, EMS.Google Scholar
  104. Van Schaeybroeck, B., Termonia, P., De Ridder, K., Fettweis, X., Gobin, A., Luyten, P., Marbaix, P., Pottiaux, E., Stavrakou, T., Van Lipzig, N., van Ypersele, J.-P., & Willems, P. (2017a). The foundation for climate services in Belgium: CORDEX.be, EGU2017-6855, PICO, EGU.Google Scholar
  105. Van Schaeybroeck, B., Termonia, P., De Ridder, K., Fettweis, X., Gobin, A., Luyten, P., Marbaix, P., Pottiaux, E., Stavrakou, T., Van Lipzig, N., van Ypersele, J.-P., & Willems, P. (2017b). The foundations for climate services in Belgium: CORDEX.be, EMS2017-414, poster, EMS.Google Scholar
  106. Vincent, L. A., Zhang, X., Bonsal, B. R., & Hogg, W. D. (2002). Homogenisation of daily temperatures over Canada. Journal of Climate, 15, 1322–1334.CrossRefGoogle Scholar
  107. Wang, X., Dai, Z., Zhang, E., Ke, F., Cao, Y., & Song, L. (2014). Tropospheric wet refractivity tomography using multiplicative algebraic reconstruction technique. Advances in Space Research, 53, 156–162.  https://doi.org/10.1016/j.asr.2013.10.012.CrossRefGoogle Scholar
  108. Xia, P., Cai, C., & Liu, Z. (2013). GNSS troposphere tomography based on two-step reconstructions using GPS observations and COSMIC profiles. Annales de Geophysique, 31, 1805–1815.  https://doi.org/10.5194/angeo-31-1805-2013.CrossRefGoogle Scholar
  109. Xu, A., Xu, Z., Ge, M., Xu, X., Zhu, H., & Sui, X. (2013). Estimating zenith tropospheric delays from BeiDou Navigation Satellite System observations. Sensors, 13, 4514–4526.  https://doi.org/10.3390/s130404514.CrossRefGoogle Scholar
  110. Yao, Y., & Zhao, Q. (2016). Maximally using GPS observation for water vapour tomography. IEEE Transactions on Geoscience and Remote Sensing, 54, 7185–7196.  https://doi.org/10.1109/TGRS.2016.2597241.CrossRefGoogle Scholar
  111. Yao, Y. B., Zhao, Q. Z., & Zhang, B. (2016). A method to improve the utilization of GNSS observation for water vapour tomography. Annales de Geophysique, 34, 143–152.  https://doi.org/10.5194/angeo-34-143-2016.CrossRefGoogle Scholar
  112. Ye, S., Xia, P., & Cai, C. (2016). Optimization of GPS water vapour tomography technique with radiosonde and COSMIC historical data. Annales de Geophysique, 34, 789–799.  https://doi.org/10.5194/angeo-34-789-2016.CrossRefGoogle Scholar
  113. Zhang, B., Fan, Q., Yao, Y., Xu, C., & Li, X. (2017). An improved tomography approach based on adaptive smoothing and ground meteorological observations. Remote Sensing, 9, 886.  https://doi.org/10.3390/rs9090886.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Physics Faculty, Department of Meteorology and GeophysicsSofia University “St. Kliment Ohridski”SofiaBulgaria
  2. 2.Department of Geodesy and Geoinformation, TU WienWienAustria
  3. 3.Royal Observatory of BelgiumBrusselsBelgium
  4. 4.Royal Belgian Institute for Space AeronomyUccleBelgium
  5. 5.Royal Meteorological Institute of BelgiumBrusselsBelgium
  6. 6.Frederick UniversityLimassolCyprus
  7. 7.Cyprus Department of MeteorologyNicosiaCyprus
  8. 8.Geodetic Observatory Pecný, RIGTCOndřejovCzech Republic
  9. 9.Institute of Geoinformatics, VŠB Technical University of OstravaOstravaCzech Republic
  10. 10.Czech Institute of Computer Science, Academy of SciencesPrahaCzech Republic
  11. 11.Danish Meteorological InstituteCopenhagenDenmark
  12. 12.Tallinn UniversityTallinnEstonia
  13. 13.Finnish Meteorological InstituteHelsinkiFinland
  14. 14.IGN Institut national de l’information géographique et forestièreParisFrance
  15. 15.Météo-FranceParisFrance
  16. 16.GFZ German Research Centre for GeosciencesPotsdamGermany
  17. 17.GFZ German Research Centre for GeosciencesHelmholtz Centre PotsdamPotsdamGermany
  18. 18.Deutscher WetterdienstOffenbachGermany
  19. 19.University of CologneCologneGermany
  20. 20.Aristotle University of ThessalonikiThessalonikiGreece
  21. 21.Tekmon GeomaticsIoánninaGreece
  22. 22.National Observatory of AthensAthensGreece
  23. 23.Budapest University of Technology and EconomicsBudapestHungary
  24. 24.Hungarian Meteorological ServiceBudapestHungary
  25. 25.The Icelandic Meteorological InstituteReykjavíkIceland
  26. 26.Interdisciplinary Centre (IDC) HerzliyaHerzliyaIsrael
  27. 27.Tel Aviv UniversityTel AvivIsrael
  28. 28.e-GEOS/Centro di Geodesia Spaziale-Agenzia Spaziale ItalianaMateraItaly
  29. 29.Centro di Geodesia Spaziale/Agenzia Spaziale Italiana contrada Terlecchia MateraRomeItaly
  30. 30.Abdus Salam International Centre for Theoretical PhysicsTriesteItaly
  31. 31.Vilnius UniversityVilniusLithuania
  32. 32.University of LuxembourgLuxembourgLuxembourg
  33. 33.Wrocław University of Environmental and Life SciencesWrocławPoland
  34. 34.Centre of Applied Geomatics of the Warsaw Military University of TechnologyWarsawPoland
  35. 35.University of Beira InteriorCovilhãPortugal
  36. 36.Instituto Português do Mar e da AtmosferaLisbonPortugal
  37. 37.Polytechnic Institute of GuardaGuardaPortugal
  38. 38.Slovak University of TechnologyBratislavaSlovakia
  39. 39.Universidad Politécnica de ValenciaValenciaSpain
  40. 40.Chalmers University of TechnologyGothenburgSweden
  41. 41.Swedish Meteorological and Hydrological InstituteGothenburgSweden
  42. 42.The Swedish Mapping, Cadastral and Land Registration AuthorityGävleSweden
  43. 43.Swiss Federal Office of TopographyWabernSwitzerland
  44. 44.ETH ZurichZürichSwitzerland
  45. 45.Bulent Ecevit UniversityZonguldakTurkey
  46. 46.Met OfficeExeterUK
  47. 47.Hong Kong Polytechnic UniversityHung HomHong Kong
  48. 48.Geoscience AustraliaCanberraAustralia
  49. 49.Environment CanadaGatineauCanada

Personalised recommendations