Skip to main content

Assessment of Wind Energy Resources Using Data Mining Techniques

  • Conference paper
  • First Online:
Renewable Energy Sources: Engineering, Technology, Innovation

Part of the book series: Springer Proceedings in Energy ((SPE))

Abstract

The paper presents the application of Data Mining techniques for the assessment of wind energy resources at Lodz Hills (Wzniesienia Lodzkie). The measurements taken at a meteorological station, as well as long-term data from meteorological reanalysis were used as the input data. Linear regression, neural networks and support vector networks were used to obtain a long-term forecast of potential wind energy resources. According to the European and Polish recommendations specifying the suitability of land for wind turbines installation in terms of wind conditions, the obtained forecast confirmed the purposefulness of localization of such installations in the examined area. The purposefulness of applying Data Mining methods for solving problems related to the assessment of wind energy resources was also confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.L. Thøgersen, M. Motta, T. Sørensen, P, Nielsen Measure-Correlate-Predict Methods: Case Studies and Software Implementation, in Proceeding of European Community Wind Energy Conference (2007), https://www.emd.dk/files/windpro/Thoegersen_MCP_EWEC_2007.pdf. Accessed 09 June 2018

  2. Atlas Rzeczypospolitej Polskiej, Główny Geodeta Kraju, Warszawa (1993–1997)

    Google Scholar 

  3. Used under Creative Commons Attribution-Share Alike 3.0 Unported Licence, https://commons.wikimedia.org/wiki/File:318.82_Wzniesienia_%C5%81%C3%B3dzkie.png. Accessed 09 June 2018

  4. C. Shearer, The CRISP-DM model: the new blueprint for data mining. J. Data Warehouse. 5(4), 13–22 (2000)

    Google Scholar 

  5. L.E. Jones, Renewable Energy Integration - Practical Management of Variability, Uncertainty, and Flexibility in Power Grids (Academic Press, Cambridge, 2014)

    Google Scholar 

  6. R.D. Prasad, R.C. Bansal, Technologies and methods used in wind resource assessment. Handbook of Renewable Energy Technology (World Scientific Publishing, Singapore, 2011)

    Google Scholar 

  7. P. Perner, Advances in Data Mining. Applications in Medicine, Web Mining, Marketing, Image and Signal Mining,in 6th Industrial Conference on Data Mining, ICDM 2006, Leipzig (2006)

    Google Scholar 

  8. W.C. Wesley, Data Mining and Knowledge Discovery for Big Data (Springer, Berlin, 2014)

    MATH  Google Scholar 

  9. J. Trajer, A. Paszek A, S. Iwan, Zarządzanie wiedzą. Podręcznik ogólnopolski, Wydawnictwo PWE, Warszawa (2011)

    Google Scholar 

  10. R. Tadeusiewicz, Sieci Neuronowe, Akademicka Oficyna Wydawnicza, Warszawa, (1993)

    Google Scholar 

  11. Electronic Statistics Textbook, http://www.statsoft.com/Textbook. Accessed 09 June 2018

  12. A. Carling, Introducing Neural Networks (Sigma Press, Wilmslow, 1992)

    MATH  Google Scholar 

  13. G.S. Koch, R.F. Link, Statistical Analysis of Geological Data (Dover Publications, New York, 1971)

    Google Scholar 

  14. P.G. Mathews, Design of Experiments with MINITAB (American Society for Quality, Milwaukee, 2015)

    Google Scholar 

  15. E. Zeidler, Oxford Users’ Guide to Mathematics (Oxford University Press, Oxford, 2004)

    MATH  Google Scholar 

  16. V. Vapnik, Statistical Learning Theory (Wiley, New York, 1998)

    MATH  Google Scholar 

  17. S. Rehman, M. Shoaib, I. Siddiqui, F. Ahmed, M.R. Tanveer, S.U. Jilani, Effect of wind shear coefficient for the vertical extrapolation of wind speed data and its impact on the viability of wind energy project. J. Basic Appl. Sci. 11, 90–100 (2005)

    Article  Google Scholar 

  18. E. Hau, Wind Turbines: Fundamentals Technologies Application, Economics (Springer, Heidelberg, 2006)

    Book  Google Scholar 

  19. A. Parajuli, A statistical analysis of wind speed and power density based on weibull and rayleigh models of Jumla Nepal. Energy Power Eng. 8, 271–282 (2016)

    Article  Google Scholar 

  20. D.L. Elliott, C.G. Holladay, W.R. Barchet, H.P., W.F. Foote, Sandusky Wind Energy Resource Atlas of the United States, Wind power classes (1986), http://rredc.nrel.gov/wind/pubs/atlas/tables/1-1T.html. Accessed 09 Feb 2018

  21. A. Cramb, Dagenham ’worst location for a wind turbine’, The Telegraph, 9 July 2009, http://www.telegraph.co.uk/news/earth/earthnews/5787111/Dagenham-worst-location-for-a-wind-turbine.html. Accessed 09 Feb 2018

  22. M. Michalak, Wind energy resource assessment for the needs of small wind energy (in Polish). AGH Electr. Electron. Eng. 28, 14–19 (2009)

    Google Scholar 

  23. D. Czekalski, R. Korupczyński, P. Obstawski, Researching on the wind energy resources at the territory of agricultural experimental Institute of Warsaw University of Life Sciences at Żelazna (in Polish), Papers of Rzeszów University of Technology. Civil Environ. Eng. 47, 63–70 (2008)

    Google Scholar 

  24. D.P. Dee et al., The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This research has been partially supported by the National Centre for Research and Development in Poland, under project no. BIOSTRATEG 3/344128/12/NCBR/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jędrzej Trajer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Trajer, J., Korupczyński, R., Wandel, M. (2020). Assessment of Wind Energy Resources Using Data Mining Techniques. In: Wróbel, M., Jewiarz, M., Szlęk , A. (eds) Renewable Energy Sources: Engineering, Technology, Innovation. Springer Proceedings in Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-13888-2_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13888-2_66

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13887-5

  • Online ISBN: 978-3-030-13888-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics