Skip to main content

Direct Electricity Production from Linseed Oil

  • Conference paper
  • First Online:
Renewable Energy Sources: Engineering, Technology, Innovation

Part of the book series: Springer Proceedings in Energy ((SPE))

  • 1076 Accesses

Abstract

Today’s energy industry is currently facing an increasing demand for electricity. Besides to the use of coal, oil and gas, in recent years renewable energy sources have also are used. One of devices using renewable energy sources is fuel cell (FC). The most commonly used fuel for fuel cells is hydrogen. But, problems with storage of this fuel causes, that the finding new fuels for FCs are very desirable. One of these fuels can be linseed oil. Powering high efficiency power sources (like FCs) with renewable fuels (like linseed oil) will allow development of renewable energy sources and elimination or reduce of toxic substances emissions. The paper presents the research of linseed oil electrooxidation. The work shows possible electrooxidation of linseed oil emulsion (with Syntanol DS-10 detergent) on a smooth electrode (Pt). The maximum current density obtained during the measurements was equal 4 mA·cm−2. Thus, the possibility of using linseed oil to direct electricity production has been proved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Kumar, B. Sah, A.R. Singh, Y. Deng, X. He, P. Kumar, R.C. Bansal, A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renew. Sustain. Energy Rev. 69, 596–609 (2017)

    Article  Google Scholar 

  2. H. Lund, Renewable energy strategies for sustainable development. Energy 32(6), 912–919 (2007)

    Article  Google Scholar 

  3. A.J. Appleby, F.R. Foulkes, Fuel Cell Handbook. 7th edn. (EG & G, U.S. Departament of Energy, Office of Fossil Energy, 2004)

    Google Scholar 

  4. R. O’Hayre, S. Cha, W. Colella, F. Prinz, Fuel Cell Fundamentals, 3rd edn. (Wiley, Hoboken, 2016)

    Book  Google Scholar 

  5. D. Stolten, Hydrogen and Fuel Cells. Fundamentals, Technologies and Applications (Wiley-VCH, Weinheim, 2010)

    Google Scholar 

  6. J. Larminie, A. Dicks, Fuel Cell System Explained (Wiley, Hoboken, 2003)

    Book  Google Scholar 

  7. G. Hoogers, Fuel Cell Technology Handbook (CRC Press, Boca Raton, 2004)

    Google Scholar 

  8. J.H. Hirschenhofer, D.B. Stauffer, R.R. Engleman, M.G. Klett (eds.), Fuel Cell Handbook, 4th edn. (U.S. Department of Energy, Office of Fossil Energy, 1998)

    Google Scholar 

  9. J. Rifkin, The Hydrogen Economy (Jeremy P. Tarcher/Penguin, New York, 2003)

    Google Scholar 

  10. D.K. Ross, Hydrogen storage: the major technological barrier to the development of hydrogen fuel cell cars. Vacuum 80(10), 1084–1089 (2006)

    Article  Google Scholar 

  11. H. Furukawa, O.Y. Yaghi, Storage of Hydrogen, Methane, and Carbon Dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc. 131(25), 8875–8883 (2009)

    Article  Google Scholar 

  12. S. Kelley, G. Deluga, W. Smyrl, A miniature Methanol/Air polymer electrolyte fuel cell. Electrochem. Solid-State Lett. 3(9), 407–409 (2000)

    Article  Google Scholar 

  13. S. Serov, C. Kwak, Direct hydrazine fuel cells. Appl. Catal. B: Environ. 98(1–2), 1–9 (2010)

    Google Scholar 

  14. J. Sheehan, V. Camobreco, J. Duffield, M. Graboski, H. Shapouri, An overview of biodiesel and petroleum diesel life cycles. National Renewable Energy Laboratory, Prepared for U.S. Department of Energy’s Office of Fuels Development and U.S. Department of Agriculture’s Office of Energy (1998)

    Google Scholar 

  15. J. Van Gerpen, Biodiesel processing and production. Fuel Process. Technol. 86(10), 1097–1107 (2005)

    Article  Google Scholar 

  16. P.P. Włodarczyk, B. Włodarczyk, A. Kalinichenko, Possibility of direct electricity production from waste canola oil, in E3S Web of Conferences (EEMS), vol. 19 (2017). 01019

    Google Scholar 

  17. P.P. Włodarczyk, B. Włodarczyk, Electrooxidation of coconut oil in alkaline electrolyte. J. Ecol. Eng. 18(5), 173–179 (2017)

    Article  Google Scholar 

  18. P.P. Włodarczyk, B. Włodarczyk, Canola oil electrooxidation in an aqueous solution of KOH - possibility of alkaline fuel cell powering with canola oil. J. Power Technol. 96(6), 459–462 (2016)

    Google Scholar 

  19. M. Lazzari, O. Chiantore, Drying and oxidative degradation of linseed oil. Polym. Degrad. Stab. 65(2), 303–313 (1999)

    Article  Google Scholar 

  20. M. Nykter, H.R. Kymäläinen, Quality characteristics of edible linseed oil. Agric. Food Sci. 15, 402–413 (2006)

    Article  Google Scholar 

  21. J.O’.M. Bockris, A.K.N. Reddy, Modern Electrochemistry (Kulwer Academic/Plenum Publishers, New York, 2000)

    Google Scholar 

  22. W. Vielstich, A. Lamm, H. Gasteiger (eds.), Handbook of Fuel Cells: Fundamentals, Technology, Applications (Wiley-VCH, Weinheim, 2003)

    Google Scholar 

  23. O. Paraska, S. Karvan, Mathematical modelling in scientific researches of chemical technology processes. Tech. Trans. Mech. Cracow Univ. Technol. Press 8(107), 203–210 (2010)

    Google Scholar 

  24. IuI Sakharov, E.G. Rastiannikov, G.M. Verbitskaia, L.N. Tarasova, Washability of syntanol DS-10 from kitchen utensils (article in Russian). Vopr. Pitan. 4, 75–77 (1975)

    Google Scholar 

  25. A. Survila, Z. Mockus, S. Kanapeckaitė, M. Samulevičienė, Effect of syntanol DS-10 and halides on tin(II) reduction kinetics. Electrochim. Acta 50(14), 2879–2885 (2005)

    Article  Google Scholar 

  26. O.V. Ignatov, IuV Shalunova, L.V. Panchenko, O.V. Turkovskaia, N.M. Ptichkina, Degradation of Syntanol DS-10 by bacteria immobilized in polysaccharide gels (article in Russian). Prikl. Biokhim. Mikrobiol. 31(2), 220–223 (1995)

    Google Scholar 

  27. P.P. Włodarczyk, B. Włodarczyk, Powering fuel cell with crude oil. J. Power Technol. 93(5), 394–396 (2013)

    Google Scholar 

  28. P.P. Włodarczyk, B. Włodarczyk, Electrooxidation of diesel fuel in alkaline electrolyte. Infrastruct. Ecol. Rural Areas 4(1), 1071–1080 (2016)

    Google Scholar 

  29. P.P. Włodarczyk, B. Włodarczyk, Electricity production from waste engine oil from agricultural machinery. Infrastruct. Ecol. Rural Areas 4(2), 1609–1618 (2017)

    Google Scholar 

  30. M. Holtzer, A. Staronka, Chemia fizyczna (Wprowadzenie. Wydawnictwo AGH, Kraków, 2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł P. Włodarczyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Włodarczyk, P.P., Włodarczyk, B. (2020). Direct Electricity Production from Linseed Oil. In: Wróbel, M., Jewiarz, M., Szlęk , A. (eds) Renewable Energy Sources: Engineering, Technology, Innovation. Springer Proceedings in Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-13888-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13888-2_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13887-5

  • Online ISBN: 978-3-030-13888-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics