Skip to main content

Nucleosynthesis in Core-Collapse Supernovae

  • Conference paper
  • First Online:
Book cover Nuclei in the Cosmos XV

Abstract

Core-collapse supernovae (CCSNe) are one of the most important nucleosynthesis sites and they hold a key role in the evolution of galaxies. In the explosion, CCSNe eject freshly synthesized iron-group nuclei from explosive burning alongside of intermediate mass elements (from hydrostatic and explosive burning), and carbon and oxygen from the pre-explosion evolution. In the neutrino-driven wind, nuclei beyond the iron group can be synthesized under neutron-rich conditions (weak r-process) and proton-rich conditions (\(\nu \)p-process). The signature of CCSN nucleosynthesis can be observed in the atmospheres of the oldest stars. Here, we will compare the nucleosynthesis from different progenitor models exploded with the PUSH method in spherical symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Chieffi, M. Limongi, Astrophys. J. 836, 79 (2017)

    Article  ADS  Google Scholar 

  2. R. Hirschi, D. Arnett et al., in IAU Symposium ed. by A. Marcowith, M. Renaud, G. Dubner, A. Ray, vol. 331 (2017)

    Google Scholar 

  3. H.-T. Janka, T. Melson, A. Summa, Ann. Rev. Nucl. Part. Sci. 66, 341 (2016)

    Article  ADS  Google Scholar 

  4. A. Burrows, D. Vartanyan et al., Space Sci. Rev. 214, 33 (2018)

    Article  ADS  Google Scholar 

  5. S.E. Woosley, T.A. Weaver, Astrophys. J. 101, 181 (1995). https://doi.org/10.1086/192237

    Article  ADS  Google Scholar 

  6. F.-K. Thielemann, K. Nomoto, M.A. Hashimoto, Astrophys. J. 460, 408 (1996)

    Article  ADS  Google Scholar 

  7. C. Fröhlich, P. Hauser et al., Astrophys. J. 637, 415 (2006)

    Article  ADS  Google Scholar 

  8. A. Harris, W.R. Hix et al., Astrophys. J. 843, 2 (2017)

    Article  ADS  Google Scholar 

  9. S. Wanajo, B. Müller et al., arXiv:1701.06786 (2017)

  10. M. Eichler, K. Nakamura et al., arXiv:1708.08393 (2017)

  11. T. Yoshida, Y. Suwa et al., Mon. Not. R. Astr. Soc. 471, 4275 (2017)

    Article  ADS  Google Scholar 

  12. A. Wongwathanarat, T. Janka et al., Astrophys. J. 842, 13 (2017)

    Article  ADS  Google Scholar 

  13. M. Ugliano, T. Janka et al., Astrophys. J. 757, 69 (2012)

    Article  ADS  Google Scholar 

  14. O. Pejcha, T. Thompson, Astrophys. J. 801, 90 (2015)

    Article  ADS  Google Scholar 

  15. B. Müller, A. Heger et al., Mon. Not. R. Astr. Soc. 460, 742 (2016)

    Article  ADS  Google Scholar 

  16. T. Ertl, T. Janka et al., Astrophys. J. 818, 124 (2012)

    Article  ADS  Google Scholar 

  17. T. Sukhbold, T. Ertl et al., Astrophys. J. 821, 38 (2016)

    Article  ADS  Google Scholar 

  18. S. Curtis, K. Ebinger et al., Astrophys. J. 870, 2 (2019)

    Google Scholar 

  19. A. Perego, M. Hempel et al., Astrophys. J. 806, 275 (2018)

    Article  ADS  Google Scholar 

  20. K. Ebinger, S. Curtis et al., Astrophys. J. 870, 1 (2019)

    Google Scholar 

  21. S.E. Woosley, A. Heger, T.A. Weaver, Rev. Mod. Phys. 74, 1015 (2002)

    Article  ADS  Google Scholar 

  22. A. Menon, A. Heger, Mon. Not. R. Astr. Soc. 469, 4649 (2017)

    ADS  Google Scholar 

  23. Fröhlich, S. Curtis, K. Ebinger, et al., submitted to J. Phys. G

    Google Scholar 

  24. M. Liebendörfer et al., Phys. Rev. D 63, 104003 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  25. M. Hempel, J. Schaffner-Bielich, Nucl. Phys. A 837, 210 (2010)

    Article  ADS  Google Scholar 

  26. M. Liebendörfer, S.C. Whitehouse, T. Fischer, Astrophys. J. 698, 1174 (2009)

    Article  ADS  Google Scholar 

  27. A. Perego, R.M. Cabezón, R. Käppeli, Astrophys. J. Suppl. 223, 22 (2016)

    Article  ADS  Google Scholar 

  28. G. Magkotsios, F.X. Timmes, M. Wiescher, Astrophys. J. 741, 78 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy (award numbers SC0010263 and DE-FG02-02ER41216).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Fröhlich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fröhlich, C., Curtis, S., Ebinger, K., Liebendörfer, M., Perego, A., Thielemann, FK. (2019). Nucleosynthesis in Core-Collapse Supernovae. In: Formicola, A., Junker, M., Gialanella, L., Imbriani, G. (eds) Nuclei in the Cosmos XV. Springer Proceedings in Physics, vol 219. Springer, Cham. https://doi.org/10.1007/978-3-030-13876-9_16

Download citation

Publish with us

Policies and ethics