Skip to main content

Algorithms for Image Texture Classification

  • Chapter
  • First Online:
Image Texture Analysis
  • 1180 Accesses

Abstract

Image texture classification utilizes either unsupervised or supervised algorithms as a classifier based on textural features extracted from images. Many of these algorithms are from early research in the statistical pattern recognition. It has been proved that if the priori probabilities information are available about datasets, Bayes decision theory gives the optimal error rates in classification. However, this priori information may not be available in many applications. Hence, many classification algorithms using other measures such as similarity on the dataset are developed for categorization. There are also many variations of these algorithms which have been developed and used in image texture classification. This chapter will explain the basic concept of the following algorithms: (1) K-means, (2) K-Nearest-Neighbor (K-NN), (3) fuzzy C-means (FCM), (4) fuzzy K-nearest-Neighbor (Fuzzy K-NN), (5) fuzzy weighted C-means (FWCM), (6) new weighted fuzzy C-means (NW-FCM), (7) possibility clustering algorithm (PCA), (8) generalized possibility clustering algorithm (GPCA), (9) credibility clustering algorithm (CCA), and (10) support vector machine (SVM). Some algorithms utilizing optimization techniques are also introduced. This includes the ant-based K-means algorithm, the K-means algorithm using genetic algorithms, the K-means algorithm using simulated annealing, and the quantum-modeled clustering algorithm (quantum K-means). In addition, a pollen-based bee algorithm for clustering is included. These methods can be used in image textures for classification.Algorithms from neural computation [2, 15, 34] for image texture classification will be discussed in Chap. 9.

The tao that can be told is not the eternal Tao. The name that can be named is not the eternal Name.

—Lao Tzu

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abe S (2010) Support vector machines for pattern recognition, 2nd edn. Springer

    Google Scholar 

  2. Ahalt SC, Krishnamurthy AK, Chen P, Melton DE (1990) Competitive learning algorithms for vector quantization. Neural Netw 3:277–290

    Article  Google Scholar 

  3. Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York

    Book  MATH  Google Scholar 

  4. Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems. Santa Fe institute studies on the sciences of complexity. Oxford University Press

    Google Scholar 

  5. Boser BE, Guyon IM, Vapnik VN (1992) A training algorithm for optimal margin classifiers. In: Proceedings of the fifth annual workshop on computational learning theory, pp 144–152

    Google Scholar 

  6. Bradford D, Hung C-C (2012) Pollen-based bee algorithm for data clustering—a computational model. Prog Intell Comput Appl (PICA) 1(1):16–36

    Google Scholar 

  7. Camps-Valls G, Bruzzone L (2005) Kernel-based methods for hyperspectral image classification. IEEE Trans Geosci Remote Sens 43(6):1351–1362

    Google Scholar 

  8. Casper E, Hung C-C (2013) Quantum modeled clustering algorithms for image segmentation. Prog Intell Comput Appl (PICA) 2(1):1–21

    Google Scholar 

  9. Davies DL, Bouldin DW (1976) A cluster separation measure. IEEE Trans Pattern Anal Mach Intell PAMI-1(2):224–227

    Google Scholar 

  10. Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cyber Part B 26:29–41

    Google Scholar 

  11. Fukunaga K (1990) Statistical pattern recognition, 2nd edn. Morgan Kaufmann

    Google Scholar 

  12. Goldberg E (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading, MA

    MATH  Google Scholar 

  13. Griffiths D (2005) Introduction to quantum mechanics. Pearson, Upper Saddle River

    Google Scholar 

  14. Hart P (1968) The condensed nearest neighbor rule. IEEE Trans Inf Theory IT-14:515–516

    Google Scholar 

  15. Hertz J, Krogh A, Palmer RG (1991) Introduction to the theory of neural computation. Addison-Wesley, Redwood City

    Google Scholar 

  16. Hung C-C, Kulcarni S, Kuo B-C (2011) A new weighted fuzzy C-means clustering algorithm for remotely sensed image classification. IEEE J Sel Top Signal Process 5(3):543–553

    Article  Google Scholar 

  17. Hung C-C, Casper E, Kuo B-C, Liu W, Jung E, Yang M (2013) A quantum-modeled fuzzy C-means clustering algorithm for remotely sensed multi-band image segmentation. In: Proceedings of the IEEE international geoscience and remote sensing symposium (IGARSS ’13) (In press)

    Google Scholar 

  18. Hung C-C, Casper E, Kuo B-C, Liu W, Jung E, Yang M (2013) A quantum-modeled artificial bee colony clustering algorithm for remotely sensed multi-band image segmentation. In: Proceedings of the IEEE international geoscience and remote sensing symposium (IGARSS ’13) (In press)

    Google Scholar 

  19. Hung C-C, Coleman T, Scheunders P (1998) The genetic algorithm approach and K-means clustering: their role in unsupervised training in image classification. In: Proceedings of the international conference on computer graphics and imaging, Halifax, Canada, June 1998

    Google Scholar 

  20. Hung C-C, Fahsi A, Coleman T (1999) Image classification. In: Encyclopedia of electrical and electronics engineering. Wiley, pp 506–521

    Google Scholar 

  21. Hung C-C, Jung E, Kuo B-C, Zhang Y (2011) A new weighted fuzzy C-means algorithm for hyperspectral image classification. In: The 2011 IEEE international geoscience & remote sensing symposium (IGARSS), Vancouver, Canada, 25–29 July 2011

    Google Scholar 

  22. Hung C-C, Saatchi S, Pham M, Xiang M, Coleman T (2005) A comparison of ant colony optimization and simulated annealing in the K-means algorithm for clustering. In: Proceedings of the 6th international conference on intelligent technologies (InTech’05), Phuket, Thailand, 14–16 Dec 2005

    Google Scholar 

  23. Hung C-C, Xu L, Kuo B-C, Liu W (2014) Ant colony optimization and K-means algorithm with spectral information divergence. In: The 2014 IEEE international geoscience & remote sensing symposium (IGARSS), Quebec, Canada, 13–18 July 2014

    Google Scholar 

  24. John ST, Nello C (2004) Kernel methods for pattern analysis. Cambridge University Press

    Google Scholar 

  25. Jozwik A (1983) A learning scheme for a fuzzy k-NN rule. Pattern Recognit Lett 1:287–289

    Google Scholar 

  26. Keller JM, Gray MR, Givens JA Jr (1985) A fuzzy K-nearest neighbor algorithm. IEEE Trans Syst Man Cybern SMC-15(4):580–585

    Google Scholar 

  27. Kim KI, Jung K, Park SH, Kim HJ (2002) Support vector machines for texture classification. IEEE Trans Pattern Anal Mach Intell 24(11):1542–1550

    Google Scholar 

  28. Krishnapuram R, Keller JM (1993) A possibilistic approach to clustering. IEEE Trans Fuzzy Syst 1(2):98–110

    Google Scholar 

  29. Krishnapuram R, Keller JM (1996) The possibilistic c-means algorithm: insights and recommendations. IEEE Trans Fuzzy Syst 4(3):385–393

    Google Scholar 

  30. Kuo B-C, Landgrebe DA (2004) Nonparametric weighted feature extraction for classification. IEEE Trans Geosci Remote Sens 42(5):1096–1105

    Article  Google Scholar 

  31. Kuo B-C, Ho H-H, Li C-H, Hung C-C, Taur J-S (2013) A kernel-based feature selection method for SVM with RBF kernel for hyperspectral image classification. IEEE J Sel Top Appl Earth Obs Remote Sens 317–326. https://doi.org/10.1109/JSTARS.2013.2262926

  32. Landgrebe DA (2003) Signal theory methods in multispectral remote sensing. Wiley

    Google Scholar 

  33. Li CH, Huang WC, Kuo BC, Hung C-C (2008) A novel fuzzy weighted C-means method for image classification. Int J Fuzzy Syst 10(3):168–173

    Google Scholar 

  34. Lippmann RP (1987) An introduction to computing with neural nets. I.E.E.E. A.S.S.P. Mag 27(11):4–22

    Google Scholar 

  35. Liu B (2004) Uncertainty theory: an introduction to its axiomatic foundations. Springer, Berlin

    Book  MATH  Google Scholar 

  36. Liu B (2006) A survey of credibility theory. Fuzzy Optim Decis Mak 5(4):387–408

    Article  MathSciNet  MATH  Google Scholar 

  37. Liu B, Liu YK (2002) Expected value of fuzzy variable and fuzzy expected value models. IEEE Trans Fuzzy Syst 10(4):445–450

    Article  Google Scholar 

  38. Liu W, Chen H, Yan Q, Liu Z, Xu J, Yu Z (2010) A novel quantum-inspired evolutionary algorithm based on variable angle-distance rotation. In: IEEE congress on evolutionary computation (CEC), pp 1–7

    Google Scholar 

  39. Melgani F, Bruzzone L (2004) Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans Geosci Remote Sens 42(8):1778–1790

    Google Scholar 

  40. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equations of state calculations by fast computing machines. J Chem Phys 21:1087–1091

    MATH  Google Scholar 

  41. Mohammed AM, Elhefhawy NA, El-Sherbiny MM, Hadoud MM (2012) Quantum crossover based quantum genetic algorithm for solving non-linear programming. In: The 8th international conference on informatics and systems (INFOS), pp BIO-145–BIO-153, 14–16 May 2012

    Google Scholar 

  42. Nielsen M, Chung I (2010) Quantum computation and quantum information. Cambridge University Press, New York

    Google Scholar 

  43. Pham DT, Otri S, Afify A, Mahmuddin M, Al-Jabbouli H (2007) Data clustering using the bees algorithm. In: Proceedings of the 40th CIRP international manufacturing systems seminar, Liverpool

    Google Scholar 

  44. Richards JA, Jia X (2006) Remote sensing digital image analysis: an introduction, 4th edn. Springer

    Google Scholar 

  45. Runkler TA, Bezdek JC (1999) Function approximation with polynomial membership functions and alternating cluster estimation. Fuzzy Sets Syst 101:207–218

    MathSciNet  MATH  Google Scholar 

  46. Runkler TA, Bezdek JC (1999) Alternating cluster estimation: a new tool for clustering and function approximation. IEEE Trans Fuzzy Syst 7:377–393

    Google Scholar 

  47. Saatchi S, Hung C-C (2005) Hybridization of the ant colony optimization with the K-means algorithm for clustering. Lecture notes in computer science (LNCS 3540, pp 511–520) SCIA 2005: image analysis. Springer

    Google Scholar 

  48. Scheunders P (1997) A genetic C-means clustering algorithm applied to color image quantization. Pattern Recognit 30(6):859–866

    Google Scholar 

  49. Swain PH, Davis SM (eds) (1978) Remote sensing: the quantitative approach. McGraw-Hill

    Google Scholar 

  50. Tao JT, Gonzalez RC (1974) Pattern recognition principles. Addison-Wesley

    Google Scholar 

  51. Tomek I (1976) A generalization of the K-NN rule. IEEE Trans Syst Man Cybern SMC-6(2):121–126

    Google Scholar 

  52. Tuia D, Camps-Valls G, Matasci G, Kanevski M (2010) Learning relevant image features with multiple-kernel classification. IEEE Trans Geosci Remote Sens 48(10):3780–3791

    Article  Google Scholar 

  53. Vapnik VN (2001) The nature of statistical learning theory, 2nd edn. Springer, New York

    MATH  Google Scholar 

  54. Wang X (1982) On the gradient inverse weighted filter. IEEE Trans Signal Process 40(2):482–484

    Article  Google Scholar 

  55. Wasserman PD (1989) Neural computing: theory and practice. Van Nostrand Reinhold, New York

    Google Scholar 

  56. Xiang M, Hung C-C, Kuo B-C, Coleman T (2005) A parallelepiped multispectral image classifier using genetic algorithms. In: Proceedings of the 2005 IEEE international geoscience & remote sensing symposium (IGARSS), Seoul, Korea, 25–29 July 2005

    Google Scholar 

  57. Yang M-S, Wu K-L (2006) Unsupervised possibilistic clustering. Pattern Recognit 39(1):5–21

    Article  Google Scholar 

  58. Yang X-S (2010) Nature-inspired metaheuristic algorithms, 2nd edn. Luniver Press

    Google Scholar 

  59. Yanofsky NS, Mannucci MA (2008) Quantum computing for computer scientists. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  60. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    MATH  Google Scholar 

  61. Zadeh LA (1978) Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst 1:3–28

    MathSciNet  MATH  Google Scholar 

  62. Zhou J, Wang Q, Hung C-C, Yang F (2017) Credibilistic clustering algorithms via alternating cluster estimation. J Intell Manuf 28(3):727–738

    Google Scholar 

  63. Zhou J, Wang Q, Hung C-C, Yi X (2015) Credibilistic clustering: the model and algorithms. Int J Uncertain Fuzziness Knowl Based Syst 23(4):545–564

    Google Scholar 

  64. Zhou J, Hung C-C (2007) A generalized approach to possibilistic clustering algorithms. Int J Uncertain Fuzziness Knowl Based Syst 15(Supp. 2):117–138

    Google Scholar 

  65. Zhou J, Hung C-C, Wang X, Chen S (2007) Fuzzy clustering based on credibility measure. In: Proceedings of the sixth international conference on information and management sciences, Lhasa, China, pp 404–411, 1–6 July 2007

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Cheng Hung .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hung, CC., Song, E., Lan, Y. (2019). Algorithms for Image Texture Classification. In: Image Texture Analysis. Springer, Cham. https://doi.org/10.1007/978-3-030-13773-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13773-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13772-4

  • Online ISBN: 978-3-030-13773-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics