Skip to main content

Texture Features and Image Texture Models

  • Chapter
  • First Online:
Image Texture Analysis

Abstract

Image texture is an important phenomenon in many applications of pattern recognition and computer vision . Hence, several models for deriving texture properties have been proposed and developed. Although there is no formal definition of image texture in the literature, image texture is usually considered the spatial arrangement of grayscale pixels in a neighborhood on the image. In this chapter, some widely used image texture methods for measuring and extracting texture features will be introduced. These textural features can then be used for image texture classification and segmentation. Specifically, the following methods will be described: (1) the gray-level co-occurrence matrices (GLCM) which is one of the earliest methods for image texture extraction, (2) Gabor filters , (3) wavelet transform (WT) model and its extension, (4) autocorrelation function , (5) Markov random fields (MRF) , (6) fractal features , (7) variogram , (8) local binary pattern (LBP) , and (9) texture spectrum (TS). LBP has been frequently used for image texture measure. MRF is a statistical model which has been well studied in image texture analysis and other applications. There is one common property associated with these methods and models which use the spatial relationship for texture measurement and classification.

A smooth sea never made a skillful sailor.

—American proverb

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen JB (1977) Short time spectral analysis, synthesis, and modification by discrete fourier transform. IEEE Trans Acoust, Speech Signal Process ASSP-25 (3):235–238

    Google Scholar 

  2. Arasteh S, Hung C-C (2006) Color and texture image segmentation using uniform local binary pattern. Mach Vis Graphics 15(3/4):265–274, 2006

    Google Scholar 

  3. Bigun J, Hans du Buf JM (1994) N-folded symmetries by complex moments in gabor space and their application to unsupervised texture segmentation. IEEE Trans Pattern Anal Mach Intell 16(1)

    Google Scholar 

  4. Brodatz P (1966) Textures: a photographic album for artists and designers. Dover Publications, New York

    Google Scholar 

  5. Bohling G (2005) Introduction to geostatistics and variogram analysis, 17 Oct 2005. http://people.ku.edu/~gbohling/cpe940

  6. Campbell FW, Robson JG (1968) Application of fourier analysis to the visibility of gratings. J Physiol 197:551–566

    Article  Google Scholar 

  7. Carr JR (1999) Classification of digital image texture using variograms. In: Atkinson PM, Tate NJ (eds) Advances in remote sensing and gis analysis. Wiley, New York, pp 135–146

    Google Scholar 

  8. Carr JR, Pellon de Miranda F (1998) The semivariogram in comparison to the co-occurrence matrix for classification of image texture. IEEE Trans Geosci Remote Sens 36(6):1945–1952

    Google Scholar 

  9. Castleman KR (1996) Digital image processing. Prentice Hall, Upper Saddle River

    Google Scholar 

  10. Clausi DA, Jernigan ME (2000) Designing Gabor filters for optimal texture separability. Pattern Recognit 33:1835–1849

    Article  Google Scholar 

  11. Daubechies, I., Ten Lectures on Wavelets, SIAM 1992

    Google Scholar 

  12. Daugman JG (1980) Two-dimensional Spectral Analysis of Cortical Receptive Field Profiles. Vis Res 20:847–856

    Article  Google Scholar 

  13. Daugman JG (1985) Uncertainty relations for resolution in space, spatial frequency, and orientation optimized by two dimensional visual cordial filters. J Opt Soc Am 2(7):1160–1169

    Article  Google Scholar 

  14. Demirkaya O, Asyalif MH, Sahoo PK Image procesing with MATLAB applications in medicine and biology. CRC Press, Boca Raton

    Google Scholar 

  15. Deutsch CV (2002) Geostatistical reservoir modeling. Oxford University Press, Oxford

    Google Scholar 

  16. Dubes RC, Jain AK (1989) Random field models in image analysis. J Appl Stat 16:131–164

    Article  Google Scholar 

  17. Dunn D, Higgins WE (1995) Optimal gabor filters for texture segmentation. IEEE Trans Image Process 4(7)

    Google Scholar 

  18. Frankot RT, Chellapa R (1987) Lognormal random-field models and their applications to radar image synthesis. IEEE Trans Geosci Remote Sens GE-25(2)

    Google Scholar 

  19. Frichtinger HG, Stroher T (1998) Gabor analysis and algorithms, theory and applications. Birkhauser, Basel

    Google Scholar 

  20. Gabor D (1946) Theory of communications. J Inst Elec Eng 93:429–457

    Google Scholar 

  21. Gilmore S, Hofmann-Wellenhof R, Muir J, Soyer HP (2009) Lacunarity analysis: a promising method for the automated assessment of melanocytic naevi and melanoma. PLoS ONE 4(10):e7449

    Google Scholar 

  22. Gonzalez RC, Woods RE (2002) Digital image processing, 2nd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  23. Haralick RM (1979) Statistical and structural approaches to texture. In: Proceedings of IEEE, vol 67, Issue 5, pp 786–804

    Google Scholar 

  24. Haralick RM, Bosley R (1973) Texture features for image classification. In: Third ERTS symposium, NASA SP-351, pp 1219–1228

    Google Scholar 

  25. Haralick RM, Shapiro LG (1992) Computer and robot vision, vol 1. Addison Wesley, Boston

    Google Scholar 

  26. He D-C, Wang L (1989) Texture unit, texture spectrum, and texture analysis. In: Proceedings of IGARSS’ 89/12th Canadian symposium remote sensing, vol 5, pp 2769–2772

    Google Scholar 

  27. He D-C, Wang L (1990) Texture unit, texture spectrum, and texture analysis. IEEE Trans Geosci Remote Sens 28(4)

    Google Scholar 

  28. Hung C-C, Karabudak D, Pham M, Coleman T (2004) Experiments on image texture classification with K-Views classifier, Markov random fields and co-occurrence probabilities. In: IEEE international conference on geoscience and remote sensing symposium (IGARSS), Anchorage, Alaska, USA, 20–24 Sep 2004

    Google Scholar 

  29. Hung CC, Pham M, Arasteh S, Kuo B-C, Coleman T (2006) Image texture classification using texture spectrum and local binary pattern. In: The 2006 IEEE international geoscience & remote sensing symposium (IGARSS), Denver, Colorado, USA, 31 July to 4 Aug 2006

    Google Scholar 

  30. Isaaks EH, Srivastava RM (1989) An introduction to applied geostatistics. Oxford University Press, Oxford

    Google Scholar 

  31. Jain AK, Farroklmia F (1990) Unsupervised texture segmentation using gabor filters. In: IEEE interactional conference on systems, man and cybernetics conference proceedings, pp 14–19,

    Google Scholar 

  32. Jensen A, La Cour-Harbo A (2001) Ripples in mathematics: the discrete wavelet transform. Springer, Berlin

    Google Scholar 

  33. Ji Y, Chang K-H, Hung C-C (2004) Efficient edge detection and object segmentation using gabor filters. In: Proceedings of the 42nd annual ACM Southeast conference, Huntsville, Alabama, USA, 2–3 Apr 2004

    Google Scholar 

  34. Jung Y, Swain PH (1996) Bayesian contextual classification based on modified M-estimates and Markov random fields. IEEE Trans Geosci Remote Sens 34:67–75

    Article  Google Scholar 

  35. Kamarainen J, Kyrki V, KaIviainen I (2002) Fundamental frequency gabor filters for object recognition. In: Proceedings of 16th international conference on patten recognition, vol I, pp 628–631

    Google Scholar 

  36. Kashyap RL, Chellappa R (1983) Estimation and choice of neighbors in spatial-interaction models of images. IEEE Trans Inf Theory 29:60–72

    Article  MATH  Google Scholar 

  37. Keller JM, Chen S (1989) Texture description and segmentation through fractal geometry. Comput Vis Graphics Image Process 45:150–166

    Article  Google Scholar 

  38. Krishnamachari S, Chellappa R (1997) Multiresolution Gauss-Markov random field models for texture segmentation. IEEE Trans Image Process 6(2)

    Google Scholar 

  39. Ling E, Servio P, Kietzig AM (2016) Fractal and lacunarity analyses: quantitative characterization of hierarchical surface topographies. Microsc Microanal 22(1):168–177

    Article  Google Scholar 

  40. Liu W, Wu L, Hung C-C (2012) Texture segmentation based on AdaBoost classifier using fractal feature – lacunarity. J Inf Comput Sci 9(1):1–11

    Article  Google Scholar 

  41. MacDonald JA, Miranda FP, Carr JR (1990) Textural image classification using variograms. In: Proceedings of SPIE 1301, digital image processing and visual communications technologies in the earth and atmospheric sciences, (1 Nov 1990). http://dx.doi.org/10.1117/12.21411

  42. Maenpaa T (2003) The local binary pattern approach to texture analysis – extensions and applications. Oulun Yliopisto, Oulu

    Google Scholar 

  43. Mallat S (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell vol II(7)

    Google Scholar 

  44. Mandelbrot B (1967) How long is the coast of britain? Statistical self-similarity and fractional dimension. Science 156(3775):636–638

    Article  Google Scholar 

  45. Mandelbrot B (1982) The fractal geometry of nature. W. H. Freeman and Company, New York

    Google Scholar 

  46. Mittal ND, Mital P, Chan KL (1999) Features for texture segmentation using gabor filters. In: Image processing and its applications,vol 465. Conference Publication

    Google Scholar 

  47. Mulcahy C (1996) Plotting and scheming with wavelets. Math Mag 69(5):323–343

    Article  MathSciNet  MATH  Google Scholar 

  48. Myint SW, Lam N (2005) A study of lacunarity-based texture analysis approaches to improve urban image classification. Comput Environ Urban Syst 29(5):501–523

    Article  Google Scholar 

  49. Nestares O, Navarro R, Portilla J, Tabemero A (1998) Efficient spatial-domain implementation of a multiscale image representation based on gabor functions. J Electron Imaging 7:166–173

    Article  Google Scholar 

  50. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Recognit Mach Intell 24(7)

    Google Scholar 

  51. Peleg S, Naor J, Harteley R, Avnir D (1984) Multiple resolution texture analysis and classification. IEEE Trans Pattern Anal Mach Intell PAMI-6:518–523

    Google Scholar 

  52. Pentland AP (1984) Fractal-Based Description of Natural Scenes. IEEE Trans Pattern Anal Mach Intell 6(6):661–674

    Article  Google Scholar 

  53. Petrou M, Sevilla PG (2006) Image processing: dealing with texture. Wiley, New York

    Google Scholar 

  54. Pietikainen MK (2000) Texture analysis in machine vision. Series in machine perception and artificial intelligence, vol 40. World Scientific, Singapore

    Google Scholar 

  55. Pham MM, Xiang C, Hung C, Kuo B-C (2005) A comparative study on the k-views classifier and markov random fields for image texture classification. Proceedings of the 43rd ACM-SE Conference, Kennesaw, Georgia, USA, 18–20 Mar 2005, pp 1–96–1-97. https://doi.org/10.1145/1167350.1167386

  56. Plotnick RE, Gardner RH, Hargrove WW, Prestegaard K, Perlmutter M (1993) Lacunarity analysis: a general technique for the analysis of spatial patterns. Phys Rev E 53(5)

    Google Scholar 

  57. Pollen DA, Ronner SF (1983) Visual Cortical Neurons as Localized Spatial Frequency Filters. IEEE Trans. SMC 13(5):907–916

    Google Scholar 

  58. Qian S, Chen D (1993) Discrete gabor transform. IEEE Trans Signal Process 41(7)

    Google Scholar 

  59. Quan Y, Xu Y, Sun Y, Luo Y (2014) Lacunarity analysis on image patterns for texture classification. Comput Vis Pattern Recognit

    Google Scholar 

  60. Shao J, Forstner W (1994) Gabor wavelets for texture edge extraction. In: Commission III Symposium

    Google Scholar 

  61. Solberg AHS, Jain AK, Taxt T (1994) Multisource classification of remotely sensed data: fusion of LANDSAT TM and SAR images. IEEE Trans Geosci Remote Sens 32(4)

    Google Scholar 

  62. Tao L, Kwan HK (2001) Real-valued discrete gabor transform for image representation. IEEE Int Symp Circuits Syst 2:589–592

    Google Scholar 

  63. Tso B, Mather P (2009) Classification methods of remotely sensed data, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  64. Vidakovic B, Mueller P (1994) Wavelets for kids: a tutorial introduction. Duke University, Institute of Statistics and Decision Sciences

    Google Scholar 

  65. Walker J (2008) A primer on wavelets and their scientific applications, 2nd edn. Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  66. Wang L, He D-C (1990) A new statistical approach for texture analysis. Photogramm Eng Remote Sens 56(1):61–66

    Google Scholar 

  67. Weldon TP, Higgins WE (1996) Integrated approach to texture segmentation using multiple gabor filters. In: Proceedings, international conference on image processing, vol 3, pp 955–958

    Google Scholar 

  68. Wen J, You Z, Li H (1994) Segmentation the metallograph images using gabor filter. In: International symposium on speech, image processing and neural networks Hong Kong, pp 13–16

    Google Scholar 

  69. Woods JW (1972) Two-dimensional discrete Markovian fields. IEEE Trans Inf Theory IT-18:232–240

    Google Scholar 

  70. Yao J, Krolak P, Steele C (1995) The generalized gabor transform. IEEE Trans Image Process 4(7):978–988

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Cheng Hung .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hung, CC., Song, E., Lan, Y. (2019). Texture Features and Image Texture Models. In: Image Texture Analysis. Springer, Cham. https://doi.org/10.1007/978-3-030-13773-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13773-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13772-4

  • Online ISBN: 978-3-030-13773-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics