Skip to main content

Graphite-Polyimide Sensor

  • 839 Accesses

Part of the Smart Sensors, Measurement and Instrumentation book series (SSMI,volume 33)

Abstract

This chapter explains the fabrication and implementation of sensor patches developed from laser-induced polymer films. Photo-thermal induction of commercial films was done to form graphene that was subsequently used as electrodes in sensor patches via transferring them on sticky tapes. The sensor patches were used for different environmental and industrial applications like salinity sensing, taste sensing, and nitrate sensing.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-13765-6_6
  • Chapter length: 40 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-13765-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 6.1
Fig. 6.2
Fig. 6.3
Fig. 6.4
Fig. 6.5
Fig. 6.6
Fig. 6.7
Fig. 6.8
Fig. 6.9
Fig. 6.10
Fig. 6.11
Fig. 6.12
Fig. 6.13
Fig. 6.14
Fig. 6.15
Fig. 6.16
Fig. 6.17
Fig. 6.18
Fig. 6.19
Fig. 6.20
Fig. 6.21
Fig. 6.22
Fig. 6.23
Fig. 6.24
Fig. 6.25
Fig. 6.26
Fig. 6.27
Fig. 6.28
Fig. 6.29
Fig. 6.30
Fig. 6.31
Fig. 6.32
Fig. 6.33
Fig. 6.34
Fig. 6.35
Fig. 6.36
Fig. 6.37
Fig. 6.38
Fig. 6.39
Fig. 6.40
Fig. 6.41
Fig. 6.42
Fig. 6.43
Fig. 6.44

References

  • Arduino (2017) Arduino Uno WiFi. https://store.arduino.cc/usa/arduino-uno-wifi. Accessed 4 Sep 2017

  • Baldwin EA, Bai J, Plotto A, Dea S (2011) Electronic noses and tongues: applications for the food and pharmaceutical industries. Sensors 11:4744–4766

    Google Scholar 

  • Bhat S (2005) Salinity (conductivity) sensor based on parallel plate capacitors

    Google Scholar 

  • Bhattacharyya N, Bandhopadhyay R (2010) Electronic nose and electronic tongue. In: Nondestructive evaluation of food quality. Springer, Berlin, pp 73–100

    Google Scholar 

  • Brender JD, Olive JM, Felkner M, Suarez L, Marckwardt W, Hendricks KA (2004) Dietary nitrites and nitrates, nitrosatable drugs, and neural tube defects. Epidemiology 15:330–336

    Google Scholar 

  • Cameron K, Di H, Moir J (2013) Nitrogen losses from the soil/plant system: a review. Ann Appl Biol 162:145–173

    Google Scholar 

  • Changes in marine salinity levels. http://pisaster.genetics.uga.edu/groups/evolution3000/wiki/cb536/Changes_in_Marine_Salinity_Levels.html

  • Chen Q, Zhao J, Guo Z, Wang X (2010) Determination of caffeine content and main catechins contents in green tea (Camellia sinensis L.) using taste sensor technique and multivariate calibration. J Food Compos Anal 23:353–358

    Google Scholar 

  • Ciosek P, Wróblewski W (2011) Potentiometric electronic tongues for foodstuff and biosample recognition—an overview. Sensors 11:4688–4701

    Google Scholar 

  • Circuit maker. https://circuitmaker.com/. Accessed 4 Sep 2017

  • Cochlin D (2014) Graphene paints a corrosion-free future. http://www.manchester.ac.uk/discover/news/graphene-paints-a-corrosion-free-future/. Accessed 28 Aug 2017

  • Concentration of chemicals in food samples. http://www.testmeters.com.au/files/2014/12/Sodium_and_Salt_Content_in_Food_Samples.pdf

  • Daniel WL, Han MS, Lee J-S, Mirkin CA (2009) Colorimetric nitrite and nitrate detection with gold nanoparticle probes and kinetic end points. J Am Chem Soc 131:6362–6363

    Google Scholar 

  • Davies-Colley R, Wilcock B (2004) Water quality and chemistry in running waters. New Zealand Hydrological Society and New Zealand Limnological Society, Freshwaters of New Zealand, Christchurch

    Google Scholar 

  • Devices A AD5933. (2017). impedance analyzer. Analog devices. http://www.analog.com/media/en/technical-documentation/data-sheets/AD5933.pdf. Accessed 04 Sep 2017

  • Dudwadkar A, Shenoy N, Joshi J, Kumar SD, Rao H, Reddy A (2013) Application of ion chromatography for the determination of nitrate in process streams of thermal denitration plant. Sep Sci Technol 48:2425–2430

    Google Scholar 

  • EIS Spectrum Analyzer. http://www.abc.chemistry.bsu.by/vi/analyser/

  • Electrical conductivity of aqueous solutions. http://www.colby.edu/chemistry/CH141/CH141L/CH141Lab4Fall2009.pdf

  • Ensafi AA, Amini M (2012) Highly selective optical nitrite sensor for food analysis based on Lauth’s violet–triacetyl cellulose membrane film. Food Chem 132:1600–1606

    Google Scholar 

  • Etoh S, Feng L, Nakashi K, Hayashi K, Ishii A, Toko K (2008) Taste sensor chip for portable taste sensor system. Sens Mater 20:151–160

    Google Scholar 

  • Gadani D, Rana V, Bhatnagar S, Prajapati A, Vyas A (2012) Effect of salinity on the dielectric properties of water

    Google Scholar 

  • Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534. https://doi.org/10.1126/science.1158877

  • Graphene paints: a corrosion-free future. http://www.manchester.ac.uk/discover/news/graphene-paints-a-corrosion-free-future

  • Greer FR, Shannon M (2005) Infant methemoglobinemia: the role of dietary nitrate in food and water. Pediatrics 116:784–786

    Google Scholar 

  • Grosso P, Le Menn M, De La J-LDB, Wu ZY, Malardé D (2010) Practical versus absolute salinity measurements: new advances in high performance seawater salinity sensors. Deep Sea Res Part I Oceanogr Res Papers 57:151–156

    Google Scholar 

  • Ha D et al (2015) Recent achievements in electronic tongue and bioelectronic tongue as taste sensors. Sens Actuators B Chem 207:1136–1146

    Google Scholar 

  • Haddi Z, El Barbri N, Tahri K, Bougrini M, El Bari N, Llobet E, Bouchikhi B (2015) Instrumental assessment of red meat origins and their storage time using electronic sensing systems. Anal Methods 7:5193–5203

    Google Scholar 

  • Herzer N, Hoeppener S, Schubert US (2010) Fabrication of patterned silane based self-assembled monolayers by photolithography and surface reactions on silicon-oxide substrates. Chem Commun 46:5634–5652

    Google Scholar 

  • Hester R, Harrison R, Addiscott TM (1996) Fertilizers and nitrate leaching. In: Agricultural chemicals and the environment, pp 1–26

    Google Scholar 

  • Holland LM, Doole GJ (2014) Implications of fairness for the design of nitrate leaching policy for heterogeneous New Zealand dairy farms. Agric Water Manage 132:79–88

    Google Scholar 

  • Huang AL et al (2006) The cells and logic for mammalian sour taste detection. Nature 442:934

    Google Scholar 

  • Huber C, Klimant I, Krause C, Werner T, Mayr T, Wolfbeis OS (2000) Optical sensor for seawater salinity. Fresenius’ J Anal Chem 368:196–202

    Google Scholar 

  • Jonsson J, Smedfors K, Nyholm L, Thornell G (2013) Towards chip-based salinity measurements for small submersibles and biologgers. Int J Oceanogr

    Google Scholar 

  • Juansah J, Yulianti W (2016) Studies on electrical behavior of glucose using impedance spectroscopy. In: IOP conference series: earth and environmental science. IOP Publishing, p 012039

    Google Scholar 

  • Kim MJ, Choe S, Kim HC, Cho SK, Kim S-K, Kim JJ (2015) Electrochemical behavior of citric acid and its influence on Cu electrodeposition for damascene metallization. J Electrochem Soc 162:D354–D359

    Google Scholar 

  • Krantz-Rülcker C, Stenberg M, Winquist F, Lundström I (2001) Electronic tongues for environmental monitoring based on sensor arrays and pattern recognition: a review. Anal Chim Acta 426:217–226

    Google Scholar 

  • Le Vine DM, Lagerloef GS, Torrusio SE (2010) Aquarius and remote sensing of sea surface salinity from space. Proc IEEE 98:688–703

    Google Scholar 

  • Lin J et al (2014) Laser-induced porous graphene films from commercial polymers. Nat Commun 5

    Google Scholar 

  • Malarde D, Wu ZY, Grosso P, de la Tocnaye JdB, Le Menn M (2008) High-resolution and compact refractometer for salinity measurements. Measure Sci Technol 20:015204

    Google Scholar 

  • Malicki M, Walczak R (1999) Evaluating soil salinity status from bulk electrical conductivity and permittivity. Eur J Soil Sci 50:505–514

    Google Scholar 

  • Mamishev AV, Sundara-Rajan K, Yang F, Du Y, Zahn M (2004) Interdigital sensors and transducers. Proc IEEE 92:808–845

    Google Scholar 

  • Medeiros ES, Gregório R, Martinez RA, Mattoso LH (2009) A taste sensor array based on polyaniline nanofibers for orange juice quality assessment. Sens Lett 7:24–30

    Google Scholar 

  • Men L, Lu P, Chen Q (2008) A multiplexed fiber Bragg grating sensor for simultaneous salinity and temperature measurement. J Appl Phys 103:053107

    Google Scholar 

  • Miranda KM, Espey MG, Wink DA (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5:62–71

    Google Scholar 

  • Monaghan R, Hedley M, Di H, McDowell R, Cameron K, Ledgard S (2007) Nutrient management in New Zealand pastures—recent developments and future issues New Zealand. J Agric Res 50:181–201

    Google Scholar 

  • Murray-Darling Basin Authority Annual Report 2015–16

    Google Scholar 

  • Nag A, Mitra A, Mukhopadhyay SC (2017a) Graphene and its sensor-based applications: a review. Sens Actuators A Phys

    Google Scholar 

  • Nag A, Mukhopadhyay S, Kosel J (2017b) Urinary incontinence monitoring system using laser-induced graphene sensors. In: Sensors. IEEE, pp 1–3

    Google Scholar 

  • Narayana B, Sunil K (2009) A spectrophotometric method for the determination of nitrite and nitrate. Eurasian J Anal Chem 4:204–214

    Google Scholar 

  • Natural environment. http://www.environment.nsw.gov.au/salinity/basics/naturalenvironment.htm

  • Organization WH (2017) Water-related diseases. http://www.who.int/water_sanitation_health/diseases-risks/diseases/methaemoglob/en/. Accessed 27 Feb 2017

  • Pellerin BA, Bergamaschi BA, Downing BD, Saraceno JF, Garrett JD, Olsen LD (2013) Optical techniques for the determination of nitrate in environmental waters: guidelines for instrument selection, operation, deployment, maintenance, quality assurance, and data reporting. In: Quality assurance, and data reporting : techniques and methods (1-D5)

    Google Scholar 

  • Pham X-H et al (2014) Electrochemical detection of nitrite using urchin-like palladium nanostructures on carbon nanotube thin film electrodes. Sens Actuators B Chem 193:815–822

    Google Scholar 

  • Properties of the Phosphate Group. http://www.tud.ttu.ee/im/Tonu.Reintamm/shabarova/4.4.html

  • Rahman H, Harun S, Yasin M, Phang S, Damanhuri S, Arof H, Ahmad H (2011) Tapered plastic multimode fiber sensor for salinity detection. Sens Actuators A 171:219–222

    Google Scholar 

  • Rahman HA, Harun SW, Yasin M, Ahmad H (2012) Fiber-optic salinity sensor using fiber-optic displacement measurement with flat and concave mirror. IEEE J Selected Topics Quantum Electron 18:1529–1533

    Google Scholar 

  • Rahman MSA, Mukhopadhyay SC, Yu P-L (2014) Experimental investigation: impedance characterization. In: Novel sensors for food inspection: modelling, fabrication and experimentation. Springer, pp 37–71

    Google Scholar 

  • Reul N et al (2014) Sea surface salinity observations from space with the SMOS satellite: A new means to monitor the marine branch of the water cycle. Surv Geophys 35:681–722

    Google Scholar 

  • Riul A, Malmegrim R, Fonseca F, Mattoso L (2003) An artificial taste sensor based on conducting polymers. Biosens Bioelectron 18:1365–1369

    Google Scholar 

  • Robinson D, Jones SB, Wraith J, Or D, Friedman S (2003) A review of advances in dielectric and electrical conductivity measurement in soils using time domain reflectometry. Vadose Zone J 2:444–475

    Google Scholar 

  • Robinson S, Nakkeeran R (2012) Photonic crystal based sensor for sensing the salinity of seawater. In: International conference on advances in engineering, science and management (ICAESM). IEEE, pp 495–499

    Google Scholar 

  • Schazmann B, Diamond D (2007) Improved nitrate sensing using ion selective electrodes based on urea-calixarene ionophores. New J Chem 31:587–592. https://doi.org/10.1039/B702841P

    Google Scholar 

  • Scudiero E, Berti A, Teatini P, Morari F (2012) Simultaneous monitoring of soil water content and salinity with a low-cost capacitance-resistance probe Sensors 12:17588–17607

    Google Scholar 

  • Squillace PJ, Scott JC, Moran MJ, Nolan B, Kolpin DW (2002) VOCs, pesticides, nitrate, and their mixtures in groundwater used for drinking water in the United States. Environ Sci Technol 36:1923–1930

    Google Scholar 

  • Tahara Y, Toko K (2013) Electronic tongues—a review. IEEE Sens J 13:3001–3011

    Google Scholar 

  • Taste disorder ‘prevalent in children’. http://www.sbs.com.au/news/article/2011/04/26/taste-disorder-prevalent-children

  • Taste disorders. https://www.nidcd.nih.gov/health/taste-disorders

  • The five senses of sensors—taste. https://www.digikey.com/en/articles/techzone/2011/jul/the-five-senses-of-sensors—taste

  • Thingspeak (2017) Thingspeak. https://thingspeak.com/. Accessed 26 Aug 2017

  • Toko K, Tahara Y, Habara M, Kobayashi Y, Ikezaki H (2016) Taste sensor: electronic tongue with global selectivity. Essentials Mach Olfaction Taste 87–174

    Google Scholar 

  • Wang S, Wang J, Li G, Tong L (2012) Modeling optical microfiber loops for seawater sensing. Appl Opt 51:3017–3023

    Google Scholar 

  • Wang X, Wang Y, Leung H, Mukhopadhyay SC, Tian M, Zhou J (2015) Mechanism and experiment of planar electrode sensors in water pollutant measurement. IEEE Trans Instrum Meas 64:516–523

    Google Scholar 

  • Website A (2017) Ciao. https://www.arduino.cc/en/Reference/Ciao. Accessed 26 Aug 2017

  • Wild A, Cameron K (1980) Nitrate leaching through soils and environmental considerations with special reference to recent work in the United Kingdom. In: Soil nitrogen as fertilizer or pollutant

    Google Scholar 

  • Wu C, Guan B-O, Lu C, Tam H-Y (2011) Salinity sensor based on polyimide-coated photonic crystal fiber. Opt Express 19:20003–20008

    Google Scholar 

  • Zhao F, Li X, Xu W, Zhang W, Ying X (2014) An electrochemical sensor for l-tryptophan using a molecularly imprinted polymer film produced by copolymerization of o-phenylenediamine and hydroquinone. Analytical Letters 47:1712–1725

    Google Scholar 

  • Zhao GQ, Zhang Y, Hoon MA, Chandrashekar J, Erlenbach I, Ryba NJ, Zuker CS (2003) The receptors for mammalian sweet and umami taste. Cell 115:255–266

    Google Scholar 

  • Zia AI, Mukhopadhyay SC, Yu P-L, Al-Bahadly IH, Gooneratne CP, Kosel J (2015) Rapid and molecular selective electrochemical sensing of phthalates in aqueous solution. Biosens Bioelectron 67:342–349

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anindya Nag .

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Nag, A., Mukhopadhyay, S.C., Kosel, J. (2019). Graphite-Polyimide Sensor. In: Printed Flexible Sensors. Smart Sensors, Measurement and Instrumentation, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-030-13765-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13765-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13764-9

  • Online ISBN: 978-3-030-13765-6

  • eBook Packages: EngineeringEngineering (R0)