Advertisement

Aluminium-Polyethylene Terephthalate Sensor

  • Anindya NagEmail author
  • Subhas Chandra Mukhopadhyay
  • Jurgen Kosel
Chapter
Part of the Smart Sensors, Measurement and Instrumentation book series (SSMI, volume 33)

Abstract

This chapter explains the fabrication and implementation of the second type of sensor prototype developed from Aluminium and Polyethylene Terephthalate (PET). Metallized PET films were laser ablated in a single-step process to develop the sensor patches. These sensors were then employed for tactile sensing purposes.

References

  1. Akiyama M, Morofuji Y, Kamohara T, Nishikubo K, Tsubai M, Fukuda O, Ueno N (2006) Flexible piezoelectric pressure sensors using oriented aluminum nitride thin films prepared on polyethylene terephthalate films. J Appl Phys 100:114318Google Scholar
  2. Aluminium—Advantages and Properties of Aluminium. http://www.azom.com/article.aspx?ArticleID=1446
  3. Capek J, Nevesely M, Lansky M (1988) Tactile sensor. Google PatentsGoogle Scholar
  4. Cutkosky MR, Howe RD, Provancher WR (2008) Force and tactile sensors. In: Springer handbook of robotics. Springer, Berlin, pp 455–476Google Scholar
  5. Dahiya RS et al (2011) Towards tactile sensing system on chip for robotic applications. Sens J 11:3216–3226Google Scholar
  6. Dahiya RS, Metta G, Valle M, Sandini G (2010) Tactile sensing—from humans to humanoids. IEEE Trans Robot 26:1–20Google Scholar
  7. Dargahi J, Najarian S (2005) Advances in tactile sensors design/manufacturing and its impact on robotics applications—a review. Ind Robot Int J 32:268–281Google Scholar
  8. De La Escosura-Muñiz A, Espinoza-Castañeda M, Hasegawa M, Philippe L, Merkoçi A (2015) Nanoparticles-based nanochannels assembled on a plastic flexible substrate for label-free immunosensing. Nano Res 8:1180–1188Google Scholar
  9. Engel J, Chen J, Fan Z, Liu C (2005) Polymer micromachined multimodal tactile sensors. Sens Actuators A Phys 117:50–61Google Scholar
  10. Ito S, Chen P, Comte P, Nazeeruddin MK, Liska P, Pechy P, Grätzel M (2007) Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells. Progress Photovoltaics Res Appl 15:603–612Google Scholar
  11. Jeong Y et al (2015) Psychological tactile sensor structure based on piezoelectric nanowire cell arrays. RSC Adv 5:40363–40368Google Scholar
  12. Kawasaki H, Komatsu T, Uchiyama K (2002) Dexterous anthropomorphic robot hand with distributed tactile sensor: Gifu hand II. IEEE/ASME Trans Mechatronics 7:296–303Google Scholar
  13. Laser cutting and engraving of PET. https://www.eurolaser.com/materials/pet-petg/
  14. Lee C, Ahn J, Lee KB, Kim D, Kim J (2012) Graphene-based flexible NO2 Chem Sens Thin Solid Films 520:5459–5462Google Scholar
  15. Li C, Wu P-M, Lee S, Gorton A, Schulz MJ, Ahn CH (2008) Flexible dome and bump shape piezoelectric tactile sensors using PVDF-TrFE copolymer. J Microelectromech Syst 17:334–341Google Scholar
  16. Lippert T (2004) Laser application of polymers. In: Polymers and Light. Springer, Berlin, pp 51–246Google Scholar
  17. Park J, Kim M, Lee Y, Lee HS, Ko H (2015) Fingertip skin–inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli. Sci Adv 1:e1500661Google Scholar
  18. Radovanovic M, Madic M (2011) Experimental investigations of CO2 laser cut quality: a review. Revista de Tehnologii Neconventionale 15:35Google Scholar
  19. Ramuz M, Tee BCK, Tok JBH, Bao Z (2012) Transparent, optical, pressure-sensitive artificial skin for large-area stretchable electronics. Adv Mater 24:3223–3227Google Scholar
  20. Saccomandi P, Schena E, Oddo CM, Zollo L, Silvestri S, Guglielmelli E (2014) Microfabricated tactile sensors for biomedical applications: a review. Biosensors 4:422–448Google Scholar
  21. Schwartz G, Tee BC-K, Mei J, Appleton AL, Kim DH, Wang H, Bao Z (2013) Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat Commun 4:1859Google Scholar
  22. Shimojo M, Namiki A, Ishikawa M, Makino R, Mabuchi K (2004) A tactile sensor sheet using pressure conductive rubber with electrical-wires stitched method. Sens J 4:589–596Google Scholar
  23. Singh J, Chu H, Abell J, Tripp RA, Zhao Y (2012) Flexible and mechanical strain resistant large area SERS active substrates. Nanoscale 4:3410–3414Google Scholar
  24. Sundaramurthy A, Schuck PJ, Conley NR, Fromm DP, Kino GS, Moerner W (2006) Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas. Nano Lett 6:355–360Google Scholar
  25. Takei K et al (2010) Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat Mater 9:821Google Scholar
  26. Wagner FR (2000) Scanning excimer laser ablation of poly(ethylene terephthalate) (PET) and its application to rapid prototyping of channels for microfluidics, PhD Thesis, Ecole Polytechnique Fédérale de Lausanne (EPFL)Google Scholar
  27. Wang X et al (2015) Dynamic pressure mapping of personalized handwriting by a flexible sensor matrix based on the mechanoluminescence process. Adv Mater 27:2324–2331Google Scholar
  28. Yang Y-J et al (2008) An integrated flexible temperature and tactile sensing array using PI-copper films. Sens Actuators A 143:143–153Google Scholar
  29. Yeo WH et al (2013) Multifunctional epidermal electronics printed directly onto the skin. Adv Mater 25:2773–2778Google Scholar
  30. Ying M et al (2012) Silicon nanomembranes for fingertip electronics. Nanotechnology 23:344004Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Anindya Nag
    • 1
    Email author
  • Subhas Chandra Mukhopadhyay
    • 2
  • Jurgen Kosel
    • 3
  1. 1.School of EngineeringMacquarie UniversitySydneyAustralia
  2. 2.School of EngineeringMacquarie UniversitySydneyAustralia
  3. 3.King Abdullah University of Science and TechnologyThuwalSaudi Arabia

Personalised recommendations