Skip to main content

Carbon Nanotubes-Polydimethylsiloxane Sensor

  • 789 Accesses

Part of the Smart Sensors, Measurement and Instrumentation book series (SSMI,volume 33)

Abstract

This chapter depicts the design, fabrication, and employment of the first novel sensor prototype formed from Carboxylic acid functionalized Multi-Walled Carbon Nanotubes (MWCNTs) and Polydimethylsiloxane (PDMS). Casting and laser cutting techniques were used to develop the patches where the electrodes were curved out off a nanocomposite layer that was formed by mixing MWCNTs and PDMS. The sensors were then employed for monitoring limb movements and respiration by attaching them to the joints of the limbs and lower part of the diaphragm. They were also deployed for low-pressure tactile sensing purposes.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-13765-6_4
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-13765-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 4.1
Fig. 4.2
Fig. 4.3
Fig. 4.4
Fig. 4.5
Fig. 4.6
Fig. 4.7
Fig. 4.8
Fig. 4.9
Fig. 4.10
Fig. 4.11
Fig. 4.12
Fig. 4.13
Fig. 4.14
Fig. 4.15
Fig. 4.16
Fig. 4.17
Fig. 4.18
Fig. 4.19
Fig. 4.20
Fig. 4.21
Fig. 4.22
Fig. 4.23
Fig. 4.24
Fig. 4.25
Fig. 4.26
Fig. 4.27
Fig. 4.28

References

  • Altun K, Barshan B (2010) Human activity recognition using inertial/magnetic sensor units. In: Human behavior understanding. Springer, Berlin, pp 38–51

    Google Scholar 

  • Aminian K, Najafi B (2004) Capturing human motion using body-fixed sensors: outdoor measurement and clinical applications. Comput Anim Virt Worlds 15:79–94

    Google Scholar 

  • Arena A, Donato N, Saitta G, Bonavita A, Rizzo G, Neri G (2010) Flexible ethanol sensors on glossy paper substrates operating at room temperature. Sens Actuators B Chemi 145:488–494

    Google Scholar 

  • Armani D, Liu C, Aluru N (1999) Re-configurable fluid circuits by PDMS elastomer micromachining. In: Twelfth IEEE international conference onmicro electro mechanical systems (MEMS’99). IEEE, pp 222–227

    Google Scholar 

  • Ashruf C (2002) Thin flexible pressure sensors. Sens Rev 22:322–327

    Google Scholar 

  • Bell J, Shen X, Sazonov E (2015) Early detection of sit-to-stand transitions in a lower limb orthosis. In: 37th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, pp 5028–5031

    Google Scholar 

  • Boland JJ (2010) Flexible electronics: within touch of artificial skin. Nat Mater 9:790–792

    Google Scholar 

  • Briand D, Molina-Lopez F, Quintero AV, Ataman C, Courbat J, de Rooij NF (2011) Why going towards plastic and flexible sensors? Proc Eng 25:8–15

    Google Scholar 

  • Bu N, Ueno N, Fukuda O (2007) Monitoring of respiration and heartbeat during sleep using a flexible piezoelectric film sensor and empirical mode decomposition. In: 2007 29th annual international conference of the IEEE Engineering in Medicine and Biology Society. IEEE, pp 1362–1366

    Google Scholar 

  • Cannata G, Maggiali M, Metta G, Sandini G (2008) An embedded artificial skin for humanoid robots. In: IEEE international conference on multisensor fusion and integration for intelligent systems (MFI 2008). IEEE, pp 434–438

    Google Scholar 

  • Carrozza MC, Dario P, Vecchi F, Roccella S, Zecca M, Sebastiani E (2003) The CyberHand: on the design of a cybernetic prosthetic hand intended to be interfaced to the peripheral nervous system. In: IEEE/RSJ international conference on intelligent robots and systems (IROS 2003). IEEE, pp 2642–2647

    Google Scholar 

  • Charton C, Schiller N, Fahland M, Holländer A, Wedel A, Noller K (2006) Development of high barrier films on flexible polymer substrates. Thin Solid Films 502:99–103

    Google Scholar 

  • Chiu Y-Y, Lin W-Y, Wang H-Y, Huang S-B, Wu M-H (2013) Development of a piezoelectric polyvinylidene fluoride (PVDF) polymer-based sensor patch for simultaneous heartbeat and respiration monitoring. Sens Actuators A Phys 189:328–334

    Google Scholar 

  • Crabtree VM, Ivanenko A, O’Brien LM, Gozal D (2003) Periodic limb movement disorder of sleep in children. J Sleep Res 12:73–81

    Google Scholar 

  • Dargahi J (2000) A piezoelectric tactile sensor with three sensing elements for robotic, endoscopic and prosthetic applications. Sens Actuators A Phys 80:23–30

    Google Scholar 

  • De Gans B-J, Duineveld PC, Schubert US (2004) Inkjet printing of polymers: state of the art and future developments. Adv Mater 16:203–213

    Google Scholar 

  • Erik Scheme P, Kevin Englehart P (2011) Electromyogram pattern recognition for control of powered upper-limb prostheses: state of the art and challenges for clinical use. J Rehabil Res Develop 48:643

    Google Scholar 

  • Fortino G, Giannantonio R, Gravina R, Kuryloski P, Jafari R (2013) Enabling effective programming and flexible management of efficient body sensor network applications. IEEE Trans Hum Mach Syst 43:115–133

    Google Scholar 

  • Fougner A, Stavdahl Ø, Kyberd PJ, Losier YG, Parker PA (2012) Control of upper limb prostheses: terminology and proportional myoelectric control—a review. IEEE Trans Neural Syst Rehabil Eng 20:663–677

    Google Scholar 

  • Frankland S, Harik V, Odegard G, Brenner D, Gates T (2003) The stress–strain behavior of polymer–nanotube composites from molecular dynamics simulation Composites Science and Technology 63:1655–1661

    Google Scholar 

  • Fujii T (2002) PDMS-based microfluidic devices for biomedical applications. Microelectron Eng 61:907–914

    Google Scholar 

  • Gower MC (2000) Excimer laser microfabrication and micromachining. In: First international symposium on laser precision microfabrication (LPM2000). International Society for Optics and Photonics, pp 124–131

    Google Scholar 

  • Hayes TL, Hagler S, Austin D, Kaye J, Pavel M (2009) Unobtrusive assessment of walking speed in the home using inexpensive PIR sensors. In: Annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2009). IEEE, pp 7248–7251

    Google Scholar 

  • Herzer N, Hoeppener S, Schubert US (2010) Fabrication of patterned silane based self-assembled monolayers by photolithography and surface reactions on silicon-oxide substrates. Chem Commun 46:5634–5652

    Google Scholar 

  • Jo B-H, Van Lerberghe LM, Motsegood KM, Beebe DJ (2000) Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer. J Microelectromech Syst 9:76–81

    Google Scholar 

  • Jung S, Ji T, Varadan VK (2006) Point-of-care temperature and respiration monitoring sensors for smart fabric applications. Smart Mater Struct 15:1872

    Google Scholar 

  • Kaniusas E et al (2006) Method for continuous nondisturbing monitoring of blood pressure by magnetoelastic skin curvature sensor and ECG. Sens J 6:819–828

    Google Scholar 

  • Kelly SDT, Suryadevara NK, Mukhopadhyay SC (2013) Towards the implementation of IoT for environmental condition monitoring in homes. Sens J 13:3846–3853

    Google Scholar 

  • Lam CXF, Mo X, Teoh S-H, Hutmacher D (2002) Scaffold development using 3D printing with a starch-based polymer. Mater Sci Eng C 20:49–56

    Google Scholar 

  • Lau CH et al (2008) The effect of functionalization on structure and electrical conductivity of multi-walled carbon nanotubes. J Nanopart Res 10:77–88

    Google Scholar 

  • Leonard PA, Douglas JG, Grubb NR, Clifton D, Addison PS, Watson JN (2006) A fully automated algorithm for the determination of respiratory rate from the photoplethysmogram. J Clin Monit Comput 20:33–36

    Google Scholar 

  • Malhi K, Mukhopadhyay SC, Schnepper J, Haefke M, Ewald H (2012) A Zigbee-based wearable physiological parameters monitoring system. IEEE Sens J 12:423–430

    Google Scholar 

  • Mehnen L et al (2004) Magnetostrictive bilayer sensors—a survey. J Alloys Compounds 369:202–204

    Google Scholar 

  • Merritt CR, Nagle HT, Grant E (2009) Textile-based capacitive sensors for respiration monitoring. IEEE Sens J 9:71–78

    Google Scholar 

  • Muzumdar A (2004) Powered upper limb prostheses: control, implementation and clinical application. Springer Science & Business Media, Berlin

    Google Scholar 

  • Najafi B, Aminian K, Paraschiv-Ionescu A, Loew F, Büla CJ, Robert P (2003) Ambulatory system for human motion analysis using a kinematic sensor: monitoring of daily physical activity in the elderly. IEEE Trans Biomed Eng 50:711–723

    Google Scholar 

  • Nguyen KD, Chen I, Luo Z, Yeo SH, Duh HB-L (2011) A wearable sensing system for tracking and monitoring of functional arm movement. IEEE/ASME Trans Mechatronics 16:213–220

    Google Scholar 

  • Nilsson L, Johansson A, Kalman S (2000) Monitoring of respiratory rate in postoperative care using a new photoplethysmographic technique. J Clin Monit Comput 16:309–315

    Google Scholar 

  • Odame K, Du D (2013) Towards a smart sensor interface for wearable cough monitoring, IEEE Global Conference on Signal and Information Processing. December 3–5, Austin, Texas, USA, pp 654–657

    Google Scholar 

  • Pfützner H et al (2006) Magnetostrictive bilayers for multi-functional sensor families. Sens Actuators A 129:154–158

    Google Scholar 

  • Reinvuo T, Hannula M, Sorvoja H, Alasaarela E, Myllylä R (2006) Measurement of respiratory rate with high-resolution accelerometer and EMFit pressure sensor. In: Sensors applications symposium. IEEE, pp 192–195

    Google Scholar 

  • Sazonov ES, Fulk G, Hill J, Schutz Y, Browning R (2011) Monitoring of posture allocations and activities by a shoe-based wearable sensor. IEEE Trans Biomed Eng 58:983–990

    Google Scholar 

  • Snakenborg D, Klank H, Kutter JP (2004) Microstructure fabrication with a CO2 laser system. J Micromech Microeng 14:182

    Google Scholar 

  • Suryadevara NK, Mukhopadhyay SC (2012) Wireless sensor network based home monitoring system for wellness determination of elderly. Sens J 12:1965–1972

    Google Scholar 

  • Touch-Sensitive Prosthetic Limbs Take Step Forward in Monkey Study (2013). http://www.livescience.com/40405-touch-sensitive-prosthetic-limbs-monkey-study.html

  • Trampuz A, Steckelberg JM, Osmon DR, Cockerill Iii FR, Hanssen AD, Patel R (2003) Advances in the laboratory diagnosis of prosthetic joint infection. Rev Med Microbiol 14:1–14

    Google Scholar 

  • Warkentin M, Freese HM, Karsten U, Schumann R (2007) New and fast method to quantify respiration rates of bacterial and plankton communities in freshwater ecosystems by using optical oxygen sensor spots. Appl Environ Microbiol 73:6722–6729

    Google Scholar 

  • Yang C-C, Hsu Y-L (2010) A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors 10:7772–7788

    Google Scholar 

  • Zimmerli W (2006) Prosthetic-joint-associated infections. Best Practice Res Clin Rheumatol 20:1045–1063

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anindya Nag .

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Nag, A., Mukhopadhyay, S.C., Kosel, J. (2019). Carbon Nanotubes-Polydimethylsiloxane Sensor. In: Printed Flexible Sensors. Smart Sensors, Measurement and Instrumentation, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-030-13765-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13765-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13764-9

  • Online ISBN: 978-3-030-13765-6

  • eBook Packages: EngineeringEngineering (R0)