Skip to main content

Literature Review

  • 823 Accesses

Part of the Smart Sensors, Measurement and Instrumentation book series (SSMI,volume 33)

Abstract

This chapter elucidates on some of the work done by different researchers on sensors developed from Carbon Nanotubes (CNTs) and graphene. Work done on the preparation and properties of CNTs and graphene are explained in addition to their employment as electrochemical, strain and electrical sensors. It also explains the work done on a range of wearable, flexible sensors, some of the network protocols used to operate them, the current challenges availing in the present scenario and some of the future opportunities in terms of market survey and betterment of the existing sensors.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-13765-6_2
  • Chapter length: 65 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-13765-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 2.1
Fig. 2.2
Fig. 2.3
Fig. 2.4
Fig. 2.5
Fig. 2.6
Fig. 2.7
Fig. 2.8
Fig. 2.9
Fig. 2.10
Fig. 2.11
Fig. 2.12
Fig. 2.13
Fig. 2.14
Fig. 2.15
Fig. 2.16
Fig. 2.17
Fig. 2.18
Fig. 2.19
Fig. 2.20
Fig. 2.21
Fig. 2.22
Fig. 2.23

References

  • 2016–2026: Market forecasts. http://www.idtechex.com/research/reports/wearable-sensors-2016-2026-market-forecasts-technologies-players-000470.asp

  • Advantages and disadvantages of graphene. https://samaterials.wordpress.com/2014/03/27/advantages-and-disadvantages-of-graphene/

  • Ahammad A, Lee J-J, Rahman MA (2009) Electrochemical sensors based on carbon nanotubes. Sensors 9:2289–2319

    Google Scholar 

  • Akhavan O, Ghaderi E (2010) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4:5731–5736

    Google Scholar 

  • Akhavan O, Ghaderi E, Esfandiar A (2011) Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation. J. Phys. Chem. B 115:6279–6288

    Google Scholar 

  • Alahi MEE, Nag A, Mukhopadhyay SC, Burkitt L (2018) A temperature-compensated graphene sensor for nitrate monitoring in real-time application. Sens Actuators, A 269:79–90

    Google Scholar 

  • Alwarappan S, Liu C, Kumar A, Li C-Z (2010) Enzyme-doped graphene nanosheets for enhanced glucose biosensing. J Phys Chem C 114:12920–12924

    Google Scholar 

  • Amirmazlaghani M, Raissi F, Habibpour O, Vukusic J, Stake J (2013) Graphene-si schottky IR detector. IEEE J Quantum Electron 49:589–594

    Google Scholar 

  • Amjadi M, Park I (2015) Carbon nanotubes-ecoflex nanocomposite for strain sensing with ultra-high stretchability. In: 2015 28th IEEE international conference on micro electro mechanical systems (MEMS), 2015. IEEE, pp 744–747

    Google Scholar 

  • Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I (2014) Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano 8:5154–5163

    Google Scholar 

  • Amjadi M, Yoon YJ, Park I (2015) Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes–Ecoflex nanocomposites. Nanotechnology 26:375501

    Google Scholar 

  • Ando Y, Iijima S (1993) Preparation of carbon nanotubes by arc-discharge evaporation. Jpn J Appl Phys 2 Lett 32:L107–L107

    Google Scholar 

  • Ando Y, Zhao X, Inoue S, Iijima S (2002) Mass production of multiwalled carbon nanotubes by hydrogen arc discharge. J Cryst Growth 237:1926–1930

    Google Scholar 

  • Andrews R et al (1999) Continuous production of aligned carbon nanotubes: a step closer to commercial realization. Chem Phys Lett 303:467–474

    Google Scholar 

  • Ang PK, Chen W, Wee ATS, Loh KP (2008) Solution-gated epitaxial graphene as pH sensor. J Am Chem Soc 130:14392–14393

    Google Scholar 

  • Arnold HN, Hersam MC (2013) Optoelectronic applications of monodisperse carbon nanomaterials. In: The wonder of nanotechnology: quantum optoelectronic devices and applications. SPIE

    Google Scholar 

  • Avouris P, Xia F (2012) Graphene applications in electronics and photonics. MRS Bull 37:1225–1234

    Google Scholar 

  • Axisa F, Schmitt PM, Gehin C, Delhomme G, McAdams E, Dittmar A (2005) Flexible technologies and smart clothing for citizen medicine, home healthcare, and disease prevention. IEEE Trans Inform Technol Biomed 9:325–336

    Google Scholar 

  • Bae S-H, Lee Y, Sharma BK, Lee H-J, Kim J-H, Ahn J-H (2013) Graphene-based transparent strain sensor. Carbon 51:236–242

    Google Scholar 

  • Bagade P, Banerjee A, Gupta SK (2015) Evidence-based development approach for safe, sustainable and secure mobile medical app. In: Wearable electronics sensors. Springer, pp 135–174

    Google Scholar 

  • Bakker E, Pretsch E, Bühlmann P (2000) Selectivity of potentiometric ion sensors. Anal Chem 72:1127–1133

    Google Scholar 

  • Banadaki Y, Mohsin K, Srivastava A A graphene field effect transistor for high temperature sensing applications. In: Proc SPIE, 2014. p 90600F

    Google Scholar 

  • Bandodkar AJ et al (2013) Tattoo-based potentiometric ion-selective sensors for epidermal pH monitoring. Analyst 138:123–128

    Google Scholar 

  • Bandodkar AJ et al (2014) Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring. Biosens Bioelectron 54:603–609

    Google Scholar 

  • Bandodkar AJ, Jia W, Wang J (2015) Tattoo-based wearable electrochemical devices: a review. Electroanalysis 27:562–572

    Google Scholar 

  • Barsan MM, Ghica ME, Brett CM (2015) Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes: a review. Anal Chim Acta 881:1–23

    Google Scholar 

  • Bauer S (2013) Flexible electronics: sophisticated skin. Nat Mater 12:871–872

    Google Scholar 

  • Berchmans S, Bandodkar AJ, Jia W, Ramírez J, Meng YS, Wang J (2014) An epidermal alkaline rechargeable Ag–Zn printable tattoo battery for wearable electronics. J Mater Chem A 2:15788–15795

    Google Scholar 

  • Biron M (2012) Thermoplastics and thermoplastic composites. William Andrew

    Google Scholar 

  • Bo Y, Yang H, Hu Y, Yao T, Huang S (2011) A novel electrochemical DNA biosensor based on graphene and polyaniline nanowires. Electrochim Acta 56:2676–2681

    Google Scholar 

  • Boland CS et al (2014) Sensitive, high-strain, high-rate bodily motion sensors based on graphene–rubber composites. ACS Nano 8:8819–8830

    Google Scholar 

  • Bolotin KI et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355

    Google Scholar 

  • Bonaccorso F, Sun Z, Hasan T, Ferrari A (2010) Graphene photonics and optoelectronics. Nat Photonics 4:611–622

    Google Scholar 

  • Brownson DA, Banks CE (2010) Graphene electrochemistry: an overview of potential applications. Analyst 135:2768–2778

    Google Scholar 

  • Brownson DA, Banks CE (2012) Fabricating graphene supercapacitors: highlighting the impact of surfactants and moieties. Chem Commun 48:1425–1427

    Google Scholar 

  • Burns A et al (2010) SHIMMER™—a wireless sensor platform for noninvasive biomedical research. IEEE Sens J 10:1527–1534

    Google Scholar 

  • Cai L et al (2013) Super-stretchable, transparent carbon nanotube-based capacitive strain sensors for human motion detection. Sci Rep 3:3048

    Google Scholar 

  • Cao Q et al (2008) Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 454:495–500

    Google Scholar 

  • Capasso A, Castillo ADR, Sun H, Ansaldo A, Pellegrini V, Bonaccorso F (2015) Ink-jet printing of graphene for flexible electronics: an environmentally-friendly approach. Solid State Commun 224:53–63

    Google Scholar 

  • Carraher Jr CE (2016) Carraher’s polymer chemistry. CRC Press

    Google Scholar 

  • Chai S-P, Zein SHS, Mohamed AR (2007) The effect of reduction temperature on Co-Mo/Al 2 O 3 catalysts for carbon nanotubes formation. Appl Catal A: General 326:173–179

    Google Scholar 

  • Chaiyakun S, Witit-Anun N, Nuntawong N, Chindaudom P, Oaew S, Kedkeaw C, Limsuwan P (2012) Preparation and characterization of graphene oxide nanosheets. Proc Eng 32:759–764

    Google Scholar 

  • Chakrabarti M et al (2013) Progress in the electrochemical modification of graphene-based materials and their applications. Electrochim Acta 107:425–440

    Google Scholar 

  • Chang N-K, Su C-C, Chang S-H (2008a) Fabrication of single-walled carbon nanotube flexible strain sensors with high sensitivity. Appl Phys Lett 92:063501

    Google Scholar 

  • Chang W-Y, Fang T-H, Lin Y-C (2008b) Characterization and fabrication of wireless flexible physiological monitor sensor. Sens Actuators, A 143:196–203

    Google Scholar 

  • Chang F-Y, Wang R-H, Yang H, Lin Y-H, Chen T-M, Huang S-J (2010) Flexible strain sensors fabricated with carbon nano-tube and carbon nano-fiber composite thin films. Thin Solid Films 518:7343–7347

    Google Scholar 

  • Chen W, Yan L (2010) Preparation of graphene by a low-temperature thermal reduction at atmosphere pressure. Nanoscale 2:559–563

    Google Scholar 

  • Chen RJ, Zhang Y, Wang D, Dai H (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 123:3838–3839

    Google Scholar 

  • Chen W, Yan L, Bangal P (2010) Chemical reduction of graphene oxide to graphene by sulfur-containing compounds. J Phys Chem C 114:19885–19890

    Google Scholar 

  • Chen C-Y, Chang C-L, Chien T-F, Luo C-H (2013a) Flexible PDMS electrode for one-point wearable wireless bio-potential acquisition. Sens Actuators, A 203:20–28

    Google Scholar 

  • Chen J, Yao B, Li C, Shi G (2013b) An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 64:225–229

    Google Scholar 

  • Chen T-Y et al (2013c) Label-free detection of DNA hybridization using transistors based on CVD grown graphene. Biosens Bioelectron 41:103–109

    Google Scholar 

  • Cheng J, Wu L, Du X-W, Jin Q-H, Zhao J-L, Xu Y-S (2014) Flexible solution-gated graphene field effect transistor for electrophysiological recording Journal of microelectromechanical systems 23:1311–1317

    Google Scholar 

  • Chien Y-S, Tsai W-L, Lee I-C, Chou J-C, Cheng H-C (2012) A novel pH sensor of extended-gate field-effect transistors with laser-irradiated carbon-nanotube network. IEEE Electron Device Lett 33:1622–1624

    Google Scholar 

  • Choi S, Jiang Z (2006) A novel wearable sensor device with conductive fabric and PVDF film for monitoring cardiorespiratory signals. Sens Actuators, A 128:317–326

    Google Scholar 

  • Choi S et al (2015) Stretchable heater using ligand-exchanged silver nanowire nanocomposite for wearable articular thermotherapy. ACS Nano 9:6626–6633

    Google Scholar 

  • Choi GR et al (2016) Strain sensing characteristics of rubbery carbon nanotube composite for flexible sensors. J Nanosci Nanotechnol 16:1607–1611

    Google Scholar 

  • Cohen DJ, Mitra D, Peterson K, Maharbiz MM (2012) A highly elastic, capacitive strain gauge based on percolating nanotube networks. Nano Letters 12:1821–1825

    Google Scholar 

  • Cohen-Karni T, Qing Q, Li Q, Fang Y, Lieber CM (2010) Graphene and nanowire transistors for cellular interfaces and electrical recording. Nano Lett 10:1098–1102

    Google Scholar 

  • Colombo A, Fontanelli D, Macii D, Palopoli L (2014) Flexible indoor localization and tracking based on a wearable platform and sensor data fusion. IEEE Trans Instrum Meas 63:864–876

    Google Scholar 

  • Coyle S, Benito-Lopez F, Radu T, Lau K-T, Diamond D (2010) Fibers and fabrics for chemical and biological sensing. Res J Text Appar 14:63–72

    Google Scholar 

  • Dai H, Thostenson ET, Schumacher T (2015) Processing and characterization of a novel distributed strain sensor using carbon nanotube-based nonwoven composites. Sensors 15:17728–17747

    Google Scholar 

  • Dean CR et al (2010) Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol 5:722–726

    Google Scholar 

  • Deen DA, Olson EJ, Ebrish MA, Koester SJ (2014) Graphene-based quantum capacitance wireless vapor sensors. IEEE Sens J 14:1459–1466

    Google Scholar 

  • Dey RS, Raj CR (2010) Development of an amperometric cholesterol biosensor based on graphene − Pt nanoparticle hybrid material. J Phys Chem C 114:21427–21433

    Google Scholar 

  • Dey RS, Raj CR (2013) Redox-functionalized graphene oxide architecture for the development of amperometric biosensing platform. ACS Appl Mater Interfaces 5:4791–4798

    Google Scholar 

  • Di J et al (2015) Stretch-triggered drug delivery from wearable elastomer films containing therapeutic depots. ACS Nano 9:9407–9415

    Google Scholar 

  • Ding Y, Yang J, Tolle CR, Zhu Z (2016) A highly stretchable strain sensor based on electrospun carbon nanofibers for human motion monitoring. RSC Adv 6:79114–79120

    Google Scholar 

  • Dittmar A, Gehin C, Delhomme G, Boivin D, Dumont G, Mott C A non invasive wearable sensor for the measurement of brain temperature. In: Engineering in Medicine and Biology Society, 2006. EMBS’06. 28th Annual International Conference of the IEEE, 2006. IEEE, pp 900–902

    Google Scholar 

  • Donaldson L (2017) Porous 3D graphene that is stronger than steel. Elsevier

    Google Scholar 

  • Dong H, Zhu Z, Ju H, Yan F (2012) Triplex signal amplification for electrochemical DNA biosensing by coupling probe-gold nanoparticles–graphene modified electrode with enzyme functionalized carbon sphere as tracer. Biosens Bioelectron 33:228–232

    Google Scholar 

  • Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    Google Scholar 

  • Du D et al (2010) Sensitive immunosensor for cancer biomarker based on dual signal amplification strategy of graphene sheets and multienzyme functionalized carbon nanospheres. Anal Chem 82:2989–2995

    Google Scholar 

  • Fan F-R, Lin L, Zhu G, Wu W, Zhang R, Wang ZL (2012) Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett 12:3109–3114

    Google Scholar 

  • Ferreira FV, Cividanes LDS, Brito FS, de Menezes BRC, Franceschi W, Simonetti EAN, Thim GP (2016) Functionalization of graphene and applications. In: Functionalizing graphene and carbon nanotubes. Springer, pp 1–29

    Google Scholar 

  • Flahaut E, Laurent C, Peigney A (2005) Catalytic CVD synthesis of double and triple-walled carbon nanotubes by the control of the catalyst preparation. Carbon 43:375–383

    Google Scholar 

  • Flexible smart sensors and the future of health. https://www.engadget.com/2015/09/21/flexible-smart-sensors-and-the-future-of-health/

  • Francioso L, De Pascali C, Farella I, Martucci C, Cretì P, Siciliano P, Perrone A Flexible thermoelectric generator for wearable biometric sensors. In: Sensors, 2010. IEEE, pp 747–750

    Google Scholar 

  • Fu W et al (2013) High mobility graphene ion-sensitive field-effect transistors by noncovalent functionalization. Nanoscale 5:12104–12110

    Google Scholar 

  • Fuchs J-N, Goerbig MO (2008) Introduction to the physical properties of graphene. In: Lecture notes

    Google Scholar 

  • Fujita T, Shiono S, Kanda K, Maenaka K, Hamada H, Higuchi K Flexible sensor for human monitoring system by using P (VDF/TrFE) thin film. In: 2012 fifth international conference on emerging trends in engineering and technology, 2012. IEEE, pp 75–79

    Google Scholar 

  • Gan T, Hu S (2011) Electrochemical sensors based on graphene materials. Microchim Acta 175:1

    Google Scholar 

  • Gao F, Cai X, Wang X, Gao C, Liu S, Gao F, Wang Q (2013) Highly sensitive and selective detection of dopamine in the presence of ascorbic acid at graphene oxide modified electrode. Sens Actuators B: Chem 186:380–387

    Google Scholar 

  • Gao W et al (2016) Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529:509–514

    Google Scholar 

  • Gautam M, Jayatissa AH (2012) Graphene based field effect transistor for the detection of ammonia. J Appl Phys 112:064304

    Google Scholar 

  • Geim AK (2011) Nobel lecture: random walk to graphene. Rev Mod Phys 83:851

    Google Scholar 

  • Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Google Scholar 

  • Gong S et al (2014) A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat Commun 5

    Google Scholar 

  • Gou P et al (2014) Carbon nanotube chemiresistor for wireless pH sensing. Sci Rep 4

    Google Scholar 

  • Graz I, Kaltenbrunner M, Keplinger C, Schwödiauer R, Bauer S, Lacour SP, Wagner S (2006) Flexible ferroelectret field-effect transistor for large-area sensor skins and microphones. Appl Phys Lett 89:073501

    Google Scholar 

  • Grigorenko A, Polini M, Novoselov K (2012) Graphene plasmonics. Nat Photonics 6:749–758

    Google Scholar 

  • Guinovart T, Bandodkar AJ, Windmiller JR, Andrade FJ, Wang J (2013) A potentiometric tattoo sensor for monitoring ammonium in sweat. Analyst 138:7031–7038

    Google Scholar 

  • Guo T, Nikolaev P, Thess A, Colbert D, Smalley R (1995) Catalytic growth of single-walled manotubes by laser vaporization. Chem Phys Lett 243:49–54

    Google Scholar 

  • Ha D, de Vries WN, John SW, Irazoqui PP, Chappell WJ (2012) Polymer-based miniature flexible capacitive pressure sensor for intraocular pressure (IOP) monitoring inside a mouse eye. Biomed microdevices 14:207–215

    Google Scholar 

  • Ha M, Park J, Lee Y, Ko H (2015) Triboelectric generators and sensors for self-powered wearable electronics. ACS Nano 9:3421–3427

    Google Scholar 

  • Haag D, Kung H (2014) Metal free graphene based catalysts: a review. Top Catal 57

    Google Scholar 

  • Haartsen J (1998) Bluetooth-The universal radio interface for ad hoc, wireless connectivity. Ericsson Rev 3:110–117

    Google Scholar 

  • Hall PS, Hao Y (2006) Antennas and propagation for body-centric wireless networks. Norwood, MA

    Google Scholar 

  • Hao Y, Foster R (2008) Wireless body sensor networks for health-monitoring applications. Physiol Meas 29:R27

    Google Scholar 

  • Hasegawa Y, Shikida M, Ogura D, Suzuki Y, Sato K (2008) Fabrication of a wearable fabric tactile sensor produced by artificial hollow fiber. J Micromech Microeng 18:085014

    Google Scholar 

  • He Y, Sheng Q, Zheng J, Wang M, Liu B (2011) Magnetite–graphene for the direct electrochemistry of hemoglobin and its biosensing application. Electrochim Acta 56:2471–2476

    Google Scholar 

  • Hempel M, Nezich D, Kong J, Hofmann M (2012) A novel class of strain gauges based on layered percolative films of 2D materials. Nano Lett 12:5714–5718

    Google Scholar 

  • Hu Y, Li F, Bai X, Li D, Hua S, Wang K, Niu L (2011) Label-free electrochemical impedance sensing of DNA hybridization based on functionalized graphene sheets. Chem Commun 47:1743–1745

    Google Scholar 

  • Hu L-H, Wu F-Y, Lin C-T, Khlobystov AN, Li L-J (2013a) Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity. Nat Commun 4:1687

    Google Scholar 

  • Hu W, Niu X, Zhao R, Pei Q (2013b) Elastomeric transparent capacitive sensors based on an interpenetrating composite of silver nanowires and polyurethane. Appl Phys Lett 102:38

    Google Scholar 

  • Huang C-T, Shen C-L, Tang C-F, Chang S-H (2008) A wearable yarn-based piezo-resistive sensor. Sens Actuators, A 141:396–403

    Google Scholar 

  • Huang C-W, Chen J-Y, Chiu C-H, Hsin C-L, Tseng T-Y, Wu W-W (2016) Observing the evolution of graphene layers at high current density. Nano Res 9:3663–3670

    Google Scholar 

  • Huc V, Bendiab N, Rosman N, Ebbesen T, Delacour C, Bouchiat V (2008) Large and flat graphene flakes produced by epoxy bonding and reverse exfoliation of highly oriented pyrolytic graphite. Nanotechnology 19:455601

    Google Scholar 

  • Hutchison J et al (2001) Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method. Carbon 39:761–770

    Google Scholar 

  • Hwa K-Y, Subramani B (2014) Synthesis of zinc oxide nanoparticles on graphene–carbon nanotube hybrid for glucose biosensor applications. Biosens Bioelectron 62:127–133

    Google Scholar 

  • Hwang J, Jang J, Hong K, Kim KN, Han JH, Shin K, Park CE (2011) Poly (3-hexylthiophene) wrapped carbon nanotube/poly (dimethylsiloxane) composites for use in finger-sensing piezoresistive pressure sensors. Carbon 49:106–110

    Google Scholar 

  • Hwang B-U, Lee J-H, Trung TQ, Roh E, Kim D-I, Kim S-W, Lee N-E (2015) Transparent stretchable self-powered patchable sensor platform with ultrasensitive recognition of human activities. ACS Nano 9:8801–8810

    Google Scholar 

  • HyungáCheong W, HyebáSong J, JoonáKim J (2016) Wearable, wireless gas sensors using highly stretchable and transparent structures of nanowires and graphene. Nanoscale 8:10591–10597

    Google Scholar 

  • Iguchi S et al (2007) A flexible and wearable biosensor for tear glucose measurement. Biomed Microdevice 9:603–609

    Google Scholar 

  • Inaba A, Yoo G, Takei Y, Matsumoto K, Shimoyama I (2013) A graphene FET gas sensor gated by ionic liquid. In: 2013 IEEE 26th international conference on micro electro mechanical systems (MEMS). IEEE, pp 969–972

    Google Scholar 

  • Jang K-I et al (2014) Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring. Nat Commun 5

    Google Scholar 

  • Jang K-I et al (2015) Soft network composite materials with deterministic and bio-inspired designs. Nat Commun. 6

    Google Scholar 

  • Jang H, Park YJ, Chen X, Das T, Kim MS, Ahn JH (2016) Graphene-based flexible and stretchable electronics. Adv Mater 28:4184–4202

    Google Scholar 

  • Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC (2013) Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem Soc Rev 42:2824–2860

    Google Scholar 

  • Jeong YR, Park H, Jin SW, Hong SY, Lee SS, Ha JS (2015) Highly stretchable and sensitive strain sensors using fragmentized graphene foam. Adv Func Mater 25:4228–4236

    Google Scholar 

  • Jia W et al (2013) Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Anal Chem 85:6553–6560

    Google Scholar 

  • Jiang L-C, Zhang W-D (2010) A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. Biosens Bioelectron 25:1402–1407

    Google Scholar 

  • Jiang L, Shen XP, Wu JL, Shen KC (2010a) Preparation and characterization of graphene/poly (vinyl alcohol) nanocomposites. J Appl Polym Sci 118:275–279

    Google Scholar 

  • Jiang Y, Hamada H, Shiono S, Kanda K, Fujita T, Higuchi K, Maenaka K (2010b) A PVDF-based flexible cardiorespiratory sensor with independently optimized sensitivity to heartbeat and respiration. Proc Eng 5:1466–1469

    Google Scholar 

  • Jin Z-H, Liu Y-L, Chen J-J, Cai S-L, Xu J, Huang W-H (2016) Conductive polymer coated carbon nanotubes to construct stretchable and transparent electrochemical sensors. Anal Chem

    Google Scholar 

  • Jing Z, Guang-Yu Z, Dong-Xia S (2013) Review of graphene-based strain sensors. Chin Phys B 22:057701

    Google Scholar 

  • Johnson M, Healy M, van de Ven P, Hayes MJ, Nelson J, Newe T, Lewis E (2009) A comparative review of wireless sensor network mote technologies. In: Sensors, 2009 IEEE. IEEE, pp 1439–1442

    Google Scholar 

  • Jones V et al (2006) Remote monitoring for healthcare and for safety in extreme environments. In: M-Health. Springer, pp 561–573

    Google Scholar 

  • Jost K, Stenger D, Perez CR, McDonough JK, Lian K, Gogotsi Y, Dion G (2013) Knitted and screen printed carbon-fiber supercapacitors for applications in wearable electronics. Energy Environ Sci 6:2698–2705

    Google Scholar 

  • Journet C et al (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388:756–758

    Google Scholar 

  • Jovanov E, Milenkovic A (2011) Body area networks for ubiquitous healthcare applications: opportunities and challenges. J Med Syst 35:1245–1254

    Google Scholar 

  • Ju J, Chen W (2015) In situ growth of surfactant-free gold nanoparticles on nitrogen-doped graphene quantum dots for electrochemical detection of hydrogen peroxide in biological environments. Anal Chem 87:1903–1910

    Google Scholar 

  • Jung D, Han M-E, Lee GS (2014) pH-sensing characteristics of multi-walled carbon nanotube sheet. Mater Lett 116:57–60

    Google Scholar 

  • Kaempgen M, Roth S (2006) Transparent and flexible carbon nanotube/polyaniline pH sensors. J Electroanal Chem 586:72–76

    Google Scholar 

  • Kang X, Wang J, Wu H, Aksay IA, Liu J, Lin Y (2009) Glucose oxidase–graphene–chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens Bioelectron 25:901–905

    Google Scholar 

  • Kang D et al (2014) Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516:222–226

    Google Scholar 

  • Kanoun O et al (2014) Flexible carbon nanotube films for high performance strain sensors. Sensors 14:10042–10071

    Google Scholar 

  • Karoui S, Amara H, Bichara C, Ducastelle F (2010) Nickel-assisted healing of defective graphene. ACS Nano 4:6114–6120

    Google Scholar 

  • Katragadda RB, Xu Y (2008) A novel intelligent textile technology based on silicon flexible skins. Sens Actuators, A 143:169–174

    Google Scholar 

  • Khatayevich D, Page T, Gresswell C, Hayamizu Y, Grady W, Sarikaya M (2014) Selective detection of target proteins by peptide-enabled graphene biosensor. Small 10:1505–1513

    Google Scholar 

  • Kim H, Kim Y, Kwon Y-S, Yoo H-J (2008) A 1.12 mW continuous healthcare monitor chip integrated on a planar fashionable circuit board. In: 2008 IEEE international solid-state circuits conference-digest of technical papers. IEEE, pp 150–603

    Google Scholar 

  • Kim H, Kim Y, Kim B, Yoo H-J (2009) A wearable fabric computer by planar-fashionable circuit board technique. In: 2009 sixth international workshop on wearable and implantable body sensor networks. IEEE, pp 282–285

    Google Scholar 

  • Kim J, Ishihara M, Koga Y, Tsugawa K, Hasegawa M, Iijima S (2011a) Low-temperature synthesis of large-area graphene-based transparent conductive films using surface wave plasma chemical vapor deposition. Appl Phys Lett 98:091502

    Google Scholar 

  • Kim Y, Song W, Lee S, Jeon C, Jung W, Kim M, Park C-Y (2011b) Low-temperature synthesis of graphene on nickel foil by microwave plasma chemical vapor deposition. Appl Phys Lett 98:263106

    Google Scholar 

  • Kim BJ, Lee S-K, Kang MS, Ahn J-H, Cho JH (2012a) Coplanar-gate transparent graphene transistors and inverters on plastic. ACS Nano 6:8646–8651

    Google Scholar 

  • Kim C-H, Yoo S-W, Nam D-W, Seo S, Lee J-H (2012b) Effect of temperature and humidity on NO2 and NH3 gas sensitivity of bottom-gate graphene FETs prepared by ICP-CVD. IEEE Electron Device Lett 33:1084–1086

    Google Scholar 

  • Kim Y-J, Kim Y, Novoselov K, Hong BH (2015) Engineering electrical properties of graphene: chemical approaches. 2D Mater 2:042001

    Google Scholar 

  • Kireev D et al (2017) Graphene field-effect transistors for in vitro and ex vivo recordings. IEEE Trans Nanotechnol 16:140–147

    Google Scholar 

  • Ko SC, Jun C-H, Jang WI, Choi C-A (2006) Micromachined air-gap structure MEMS acoustic sensor using reproducible high-speed lateral etching and CMP process. J Micromech Microeng 16:2071

    Google Scholar 

  • Koester SJ (2011) High quality factor graphene varactors for wireless sensing applications. Appl Phys Lett 99:163105

    Google Scholar 

  • Kona S (2012) Carbon nanomaterial based vapor sensors. University of Louisville

    Google Scholar 

  • Konstantatos G et al (2012) Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat Nanotechnol 7:363–368

    Google Scholar 

  • Koppens F, Mueller T, Avouris P, Ferrari A, Vitiello M, Polini M (2014) Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat nanotechnol 9:780–793

    Google Scholar 

  • Korhonen I, Parkka J, Van Gils M (2003) Health monitoring in the home of the future. IEEE Eng Med Biol Mag 22:66–73

    Google Scholar 

  • Kudo H, Sawada T, Kazawa E, Yoshida H, Iwasaki Y, Mitsubayashi K (2006) A flexible and wearable glucose sensor based on functional polymers with soft-MEMS techniques. Biosens Bioelectron 22:558–562

    Google Scholar 

  • Kudo H, Iguchi S, Yamada T, Kawase T, Saito H, Otsuka K, Mitsubayashi K (2007) A flexible transcutaneous oxygen sensor using polymer membranes. Biomed Microdevice 9:1–6

    Google Scholar 

  • Kuila T, Bose S, Mishra AK, Khanra P, Kim NH, Lee JH (2012) Chemical functionalization of graphene and its applications. Prog Mater Sci 57:1061–1105

    Google Scholar 

  • Kurowska E, Brzózka A, Jarosz M, Sulka G, Jaskuła M (2013) Silver nanowire array sensor for sensitive and rapid detection of H2O2. Electrochim Acta 104:439–447

    Google Scholar 

  • Kuzmany H, Kukovecz A, Simon F, Holzweber M, Kramberger C, Pichler T (2004) Functionalization of carbon nanotubes. Synth Met 141:113–122

    Google Scholar 

  • Kwak YH et al (2012) Flexible glucose sensor using CVD-grown graphene-based field effect transistor. Biosens Bioelectron 37:82–87

    Google Scholar 

  • Lau PH et al. (2013) Fully printed, high performance carbon nanotube thin-film transistors on flexible substrates. Nano Lett 13:3864–3869

    Google Scholar 

  • Lavin-Lopez M, Fernandez-Diaz M, Sanchez-Silva L, Valverde J, Romero A (2017) Improving the growth of monolayer CVD-graphene over polycrystalline iron sheets. New J Chem 41:5066–5074

    Google Scholar 

  • Lawal AT (2015) Synthesis and utilisation of graphene for fabrication of electrochemical sensors. Talanta 131:424–443

    Google Scholar 

  • Le T, Lakafosis V, Lin Z, Wong C, Tentzeris M (2012) Inkjet-printed graphene-based wireless gas sensor modules. In: Electronic components and technology conference (ECTC), IEEE 62nd, 2012. IEEE, pp 1003–1008

    Google Scholar 

  • Lebedkin S et al (2002) Single-wall carbon nanotubes with diameters approaching 6 nm obtained by laser vaporization. Carbon 40:417–423

    Google Scholar 

  • Lebedkin S, Hennrich F, Skipa T, Kappes MM (2003) Near-infrared photoluminescence of single-walled carbon nanotubes prepared by the laser vaporization method. J Phys Chem B 107:1949–1956

    Google Scholar 

  • Lee D, Cui T (2010) Low-cost, transparent, and flexible single-walled carbon nanotube nanocomposite based ion-sensitive field-effect transistors for pH/glucose sensing. Biosens Bioelectron 25:2259–2264

    Google Scholar 

  • Lee S, Lee K, Zhong Z (2010) Wafer scale homogeneous bilayer graphene films by chemical vapor deposition. Nano Lett 10:4702–4707

    Google Scholar 

  • Lee S-K et al (2011) Stretchable graphene transistors with printed dielectrics and gate electrodes. Nano Lett 11:4642–4646

    Google Scholar 

  • Lee S-K et al (2012) All graphene-based thin film transistors on flexible plastic substrates. Nano Lett 12:3472–3476

    Google Scholar 

  • Lee JS, Oh J, Jun J, Jang J (2015a) Wireless hydrogen smart sensor based on Pt/graphene-immobilized radio-frequency identification tag. ACS Nano 9:7783–7790

    Google Scholar 

  • Lee S-M, Kim J-H, Ahn J-H (2015b) Graphene as a flexible electronic material: mechanical limitations by defect formation and efforts to overcome. Mater Today 18:336–344

    Google Scholar 

  • Lei N, Li P, Xue W, Xu J (2011) Simple graphene chemiresistors as pH sensors: fabrication and characterization. Meas Sci Technol 22:107002

    Google Scholar 

  • Li C, Chou T-W (2003) Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces. Compos Sci Technol 63:1517–1524

    Google Scholar 

  • Li Z, Wang ZL (2011) Air/liquid-pressure and heartbeat-driven flexible fiber nanogenerators as a micro/nano-power source or diagnostic sensor. Adv Mater 23:84–89

    Google Scholar 

  • Li X et al (2012a) Multifunctional graphene woven fabrics. Sci Rep 2

    Google Scholar 

  • Li X et al (2012b) Stretchable and highly sensitive graphene-on-polymer strain sensors. Sci Rep 2:870

    Google Scholar 

  • Li Y, Liu J, Wang Y, Wang ZL (2001) Preparation of monodispersed Fe-Mo nanoparticles as the catalyst for CVD synthesis of carbon nanotubes. Chem Mater 13:1008–1014

    Google Scholar 

  • Li GY, Wang PM, Zhao X (2005) Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon 43:1239–1245

    Google Scholar 

  • Li X, Zhang G, Bai X, Sun X, Wang X, Wang E, Dai H (2008) Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol 3:538–542

    Google Scholar 

  • Li S-J, He J-Z, Zhang M-J, Zhang R-X, Lv X-L, Li S-H, Pang H (2013) Electrochemical detection of dopamine using water-soluble sulfonated graphene. Electrochim Acta 102:58–65

    Google Scholar 

  • Li J, Niu L, Zheng Z, Yan F (2014) Photosensitive graphene transistors. Adv Mater 26:5239–5273

    Google Scholar 

  • Li C et al (2015a) Flexible CNT-array double helices strain sensor with high stretchability for motion capture. Sci Rep 5:15554

    Google Scholar 

  • Li Z, Xie C, Wang J, Meng A, Zhang F (2015b) Direct electrochemistry of cholesterol oxidase immobilized on chitosan–graphene and cholesterol sensing. Sens Actuators B: Chem 208:505–511

    Google Scholar 

  • Li M, Liu D, Wei D, Song X, Wei D, Wee ATS (2016) Controllable synthesis of graphene by plasma‐enhanced chemical vapor deposition and its related applications. Adv Sci 3

    Google Scholar 

  • Liao C, Mak C, Zhang M, Chan HL, Yan F (2015a) Flexible organic electrochemical transistors for highly selective enzyme biosensors and used for saliva testing. Adv Mater 27:676–681

    Google Scholar 

  • Liao C, Zhang M, Yao MY, Hua T, Li L, Yan F (2015b) Flexible organic electronics in biology: materials and devices. Adv Mater 27:7493–7527

    Google Scholar 

  • Lim SH, Wei J, Lin J, Li Q, KuaYou J (2005) A glucose biosensor based on electrodeposition of palladium nanoparticles and glucose oxidase onto Nafion-solubilized carbon nanotube electrode. Biosens Bioelectron 20:2341–2346

    Google Scholar 

  • Lim M, Lee J, Kim DH, Kim DM, Kim S, Choi S-J (2016) Comparative study of piezoresistance effect of semiconducting carbon nanotube-polydimethylsiloxane nanocomposite strain sensor. In: 2016 IEEE 16th international conference on nanotechnology (IEEE-NANO), 2016. IEEE, pp 755–758

    Google Scholar 

  • Lipomi DJ, Vosgueritchian M, Tee BC, Hellstrom SL, Lee JA, Fox CH, Bao Z (2011) Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotechnol 6:788–792

    Google Scholar 

  • Lisiewski A, Liu H, Yu M, Currano L, Gee D (2011) Fly-ear inspired micro-sensor for sound source localization in two dimensions. J Acoust Soc Am 129:EL166-EL171

    Google Scholar 

  • Liu M et al (2011) A graphene-based broadband optical modulator. Nature 474:64

    Google Scholar 

  • Liu M, Yin X, Zhang X (2012) Double-layer graphene optical modulator. Nano Lett 12:1482–1485

    Google Scholar 

  • Liu M, Liu R, Chen W (2013) Graphene wrapped Cu 2 O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability. Biosens Bioelectron 45:206–212

    Google Scholar 

  • Liu M, Zhang R, Chen W (2014a) Graphene-supported nanoelectrocatalysts for fuel cells: synthesis, properties, and applications. Chem Rev 114:5117–5160

    Google Scholar 

  • Liu W-W, Chai S-P, Mohamed AR, Hashim U (2014b) Synthesis and characterization of graphene and carbon nanotubes: a review on the past and recent developments. J Ind Eng Chem 20:1171–1185

    Google Scholar 

  • Liu Q, Zhang M, Huang L, Li Y, Chen J, Li C, Shi G (2015) High-quality graphene ribbons prepared from graphene oxide hydrogels and their application for strain sensors. ACS Nano 9:12320–12326

    Google Scholar 

  • Liu Y, Xia Q, He J, Liu Z (2017) Direct observation of high photoresponsivity in pure graphene photodetectors. Nanoscale Res Lett 12:93

    Google Scholar 

  • Loh KJ, Kim J, Lynch JP, Kam NWS, Kotov NA (2007) Multifunctional layer-by-layer carbon nanotube–polyelectrolyte thin films for strain and corrosion sensing. Smart Mater Struct 16:429

    Google Scholar 

  • Lorwongtragool P, Sowade E, Watthanawisuth N, Baumann RR, Kerdcharoen T (2014) A novel wearable electronic nose for healthcare based on flexible printed chemical sensor array. Sensors 14:19700–19712

    Google Scholar 

  • Losurdo M, Giangregorio MM, Capezzuto P, Bruno G (2011) Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure. Phys Chem Chem Phys 13:20836–20843

    Google Scholar 

  • Lu L-M et al (2009) A nano-Ni based ultrasensitive nonenzymatic electrochemical sensor for glucose: enhancing sensitivity through a nanowire array strategy. Biosens Bioelectron 25:218–223

    Google Scholar 

  • Lu C-C, Lin Y-C, Yeh C-H, Huang J-C, Chiu P-W (2012) High mobility flexible graphene field-effect transistors with self-healing gate dielectrics. ACS Nano 6:4469–4474

    Google Scholar 

  • Luo J, Jiang S, Zhang H, Jiang J, Liu X (2012) A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode. Anal Chim Acta 709:47–53

    Google Scholar 

  • Lv W, Jin F-M, Guo Q, Yang Q-H, Kang F (2012) DNA-dispersed graphene/NiO hybrid materials for highly sensitive non-enzymatic glucose sensor. Electrochim Acta 73:129–135

    Google Scholar 

  • Machado BF, Serp P (2012) Graphene-based materials for catalysis. Catal Sci Technol 2:54–75

    Google Scholar 

  • Maehashi K, Sofue Y, Okamoto S, Ohno Y, Inoue K, Matsumoto K (2013) Selective ion sensors based on ionophore-modified graphene field-effect transistors. Sens Actuators B: Chem 187:45–49

    Google Scholar 

  • Mailly-Giacchetti B et al (2013) pH sensing properties of graphene solution-gated field-effect transistors. J Appl Phys 114:084505

    Google Scholar 

  • Malzahn K, Windmiller JR, Valdés-Ramírez G, Schöning MJ, Wang J (2011) Wearable electrochemical sensors for in situ analysis in marine environments. Analyst 136:2912–2917

    Google Scholar 

  • Mannoor MS et al (2012) Graphene-based wireless bacteria detection on tooth enamel. Nat Commun 3:763

    Google Scholar 

  • Marchena M et al (2017) Direct growth of 2D and 3D graphene nano-structures over large glass substrates by tuning a sacrificial Cu-template layer. 2D Mater

    Google Scholar 

  • Martinez A, Sun Z (2013) Nanotube and graphene saturable absorbers for fibre lasers. Nat Photonics 7:842–845

    Google Scholar 

  • Maruyama S, Kojima R, Miyauchi Y, Chiashi S, Kohno M (2002) Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol. Chem Phys Lett 360:229–234

    Google Scholar 

  • Mas-Balleste R, Gomez-Navarro C, Gomez-Herrero J, Zamora F (2011) 2D materials: to graphene and beyond. Nanoscale 3:20–30

    Google Scholar 

  • Matsumoto K, Maehashi K, Ohno Y, Inoue K (2014) Recent advances in functional graphene biosensors. J Phys D Appl Phys 47:094005

    Google Scholar 

  • Matzeu G, Florea L, Diamond D (2015) Advances in wearable chemical sensor design for monitoring biological fluids. Sens Actuators B: Chem 211:403–418

    Google Scholar 

  • Maurer U, Rowe A, Smailagic A, Siewiorek DP (2006) eWatch: a wearable sensor and notification platform. In: International workshop on wearable and implantable body sensor networks (BSN’06), 2006. IEEE, pp 4, 145

    Google Scholar 

  • Mayer JM, Mooney V, Matheson LN, Erasala GN, Verna JL, Udermann BE, Leggett S (2006) Continuous low-level heat wrap therapy for the prevention and early phase treatment of delayed-onset muscle soreness of the low back: a randomized controlled trial. Arch Phys Med Rehabil 87:1310–1317

    Google Scholar 

  • Melzer M et al (2015) Wearable magnetic field sensors for flexible electronics. Adv Mater 27:1274–1280

    Google Scholar 

  • Meng J, Chen JJ, Zhang L, Bie YQ, Liao ZM, Yu DP (2015) Vertically architectured stack of multiple graphene field-effect transistors for flexible electronics. Small 11:1660–1664

    Google Scholar 

  • Mercante LA, Facure MH, Sanfelice RC, Migliorini FL, Mattoso LH, Correa DS (2017) One-pot preparation of PEDOT: PSS-reduced graphene decorated with Au nanoparticles for enzymatic electrochemical sensing of H2O2. Appl Surf Sci 407:162–170

    Google Scholar 

  • Michelis F, Bodelot L, Cojocaru C-S, Sorin J-L, Bonnassieux Y, ère Lebental B (2014) Wireless flexible strain sensor based on carbon nanotube piezoresistive networks for embedded measurement of strain in concrete. In: EWSHM-7th European workshop on structural health monitoring

    Google Scholar 

  • Minev IR et al (2015) Electronic dura mater for long-term multimodal neural interfaces. Science 347:159–163

    Google Scholar 

  • Moon J-H, Baek DH, Choi YY, Lee KH, Kim HC, Lee S-H (2010) Wearable polyimide–PDMS electrodes for intrabody communication. J Micromech Microeng 20:025032

    Google Scholar 

  • Mueller T, Xia F, Avouris P (2010) Graphene photodetectors for high-speed optical communications. Nat Photonics 4:297–301

    Google Scholar 

  • Münzer A, Melzer K, Heimgreiter M, Scarpa G (2013) Random CNT network and regioregular poly (3-hexylthiophen) FETs for pH sensing applications: a comparison. Biochim Biophys Acta 1830:4353–4358

    Google Scholar 

  • Nag A, Mukhopadhyay SC (2018) Fabrication and implementation of printed sensors for taste sensing applications. Sens Actuators, A 269:53–61

    Google Scholar 

  • Nag A, Mukhopadhyay S, Kosel J (2016a) Transparent biocompatible sensor patches for touch sensitive prosthetic limbs. In: 2016 10th international conference on sensing technology (ICST). IEEE, pp 1–6

    Google Scholar 

  • Nag A, Mukhopadhyay SC, Kosel J (2016b) Flexible carbon nanotube nanocomposite sensor for multiple physiological parameter monitoring. Sens Actuators, A 251:148–155

    Google Scholar 

  • Nag A, Mukhopadhyay SC, Kosel J (2016c) Tactile sensing from laser-ablated metallized PET films. IEEE Sens J 17:7–13

    Google Scholar 

  • Nag A, Mitra A, Mukhopadhyay SC (2017a) Graphene and its sensor-based applications: a review. Sens Actuators A: Phys

    Google Scholar 

  • Nag A, Mukhopadhyay S, Kosel J (2017b) Influence of temperature and humidity on carbon based printed flexible sensors. In: 2017 eleventh international conference on sensing technology (ICST). IEEE, pp 1–6

    Google Scholar 

  • Nag A, Mukhopadhyay S, Kosel J (2017c) Urinary incontinence monitoring system using laser-induced graphene sensors. In: SENSORS, 2017 IEEE, pp 1–3

    Google Scholar 

  • Nag A, Mukhopadhyay SC, Kosel J (2017d) Sensing System for salinity testing using laser-induced graphene sensors. Sens Actuators A: Phys

    Google Scholar 

  • Nag A, Afasrimanesh N, Feng S, Mukhopadhyay SC (2018a) Strain induced graphite/PDMS sensors for biomedical applications. Sens Actuators A 271:257–269

    Google Scholar 

  • Nag A, Feng S, Mukhopadhyay S, Kosel J, Inglis D (2018b) 3D printed mould-based graphite/PDMS sensor for low-force applications. Sens Actuators A: Phys 280:525–534

    Google Scholar 

  • Nag A, Menzies B, Mukhopadhyay SC (2018c) Performance Analysis of flexible printed sensors for robotic arm applications. Sens Actuators A: Phys

    Google Scholar 

  • Nair RR et al (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308

    Google Scholar 

  • Nakamoto H, Ootaka H, Tada M, Hirata I, Kobayashi F, Kojima F (2015) Stretchable strain sensor based on areal change of carbon nanotube electrode. IEEE Sens J 15:2212–2218

    Google Scholar 

  • Neto AC, Guinea F, Peres NM, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phy 81:109

    Google Scholar 

  • Novoselov KS et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Google Scholar 

  • Novoselov K, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S, Geim A (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102:10451–10453

    Google Scholar 

  • Novoselov KS, Fal V, Colombo L, Gellert P, Schwab M, Kim K (2012) A roadmap for graphene. Nature 490:192–200

    Google Scholar 

  • Odom TW, Huang JL, Lieber CM (2002) Single-walled carbon nanotubes. Ann N Y Acad Sci 960:203–215

    Google Scholar 

  • Ohmura R, Naya F, Noma H, Kogure K (2006) B-pack: a bluetooth-based wearable sensing device for nursing activity recognition. In: 2006 1st international symposium on wireless pervasive computing, 2006. IEEE, 6 pp

    Google Scholar 

  • Ohno Y, Maehashi K, Yamashiro Y, Matsumoto K (2009) Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption. Nano Lett 9:3318–3322

    Google Scholar 

  • Ohno Y, Maehashi K, Matsumoto K (2010) Label-free biosensors based on aptamer-modified graphene field-effect transistors. J Am Chem Soc 132:18012–18013

    Google Scholar 

  • Graphene photodetector enhanced by fractal golden ‘snowflake’. https://phys.org/news/2017–01-graphene-photodetector-fractal-golden-snowflake.html

  • Organic electronics will play a key role in increasing the utility of wearables. https://www.wearable-technologies.com/2016/03/organic-electronics-will-play-a-key-role-in-increasing-the-utility-of-wearables/

  • Pacelli M, Caldani L, Paradiso R (2006) Textile piezoresistive sensors for biomechanical variables monitoring. In: Engineering in medicine and biology society, 2006. EMBS’06. 28th annual international conference of the IEEE, 2006. IEEE, pp 5358–5361

    Google Scholar 

  • Palanisamy S, Chen S-M, Sarawathi R (2012) A novel nonenzymatic hydrogen peroxide sensor based on reduced graphene oxide/ZnO composite modified electrode. Sens Actuators B: Chem 166:372–377

    Google Scholar 

  • Pang C, Lee G-Y, Kim T-I, Kim SM, Kim HN, Ahn S-H, Suh K-Y (2012) A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat Mater 11:795–801

    Google Scholar 

  • Papageorgiou DG, Kinloch IA, Young RJ (2015) Graphene/elastomer nanocomposites. Carbon 95:460–484

    Google Scholar 

  • Park C, Chou PH, Bai Y, Matthews R, Hibbs A (2006) An ultra-wearable, wireless, low power ECG monitoring system. In: 2006 IEEE biomedical circuits and systems conference, 2006. IEEE, pp 241–244

    Google Scholar 

  • Park M, Kim H, Youngblood JP (2008) Strain-dependent electrical resistance of multi-walled carbon nanotube/polymer composite films. Nanotechnology 19:055705

    Google Scholar 

  • Park HJ, Meyer J, Roth S, Skákalová V (2010) Growth and properties of few-layer graphene prepared by chemical vapor deposition. Carbon 48:1088–1094

    Google Scholar 

  • Park JJ, Hyun WJ, Mun SC, Park YT, Park OO (2015) Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring. ACS Appl Mater Interfaces 7:6317–6324

    Google Scholar 

  • Park S, Shin SH, Yogeesh MN, Lee AL, Rahimi S, Akinwande D (2016a) Extremely high-frequency flexible graphene thin-film transistors. IEEE Electron Device Lett 37:512–515

    Google Scholar 

  • Park SJ, Kim J, Chu M, Khine M (2016b) Highly flexible wrinkled carbon nanotube thin film strain sensor to monitor human movement. Adv Mater Technol 1

    Google Scholar 

  • Patterson JA, McIlwraith DC, Yang G-Z (2009) A flexible, low noise reflective PPG sensor platform for ear-worn heart rate monitoring. In: 2009 sixth international workshop on wearable and implantable body sensor networks, 2009. IEEE, pp 286–291

    Google Scholar 

  • Periasamy AP, Chang Y-J, Chen S-M (2011) Amperometric glucose sensor based on glucose oxidase immobilized on gelatin-multiwalled carbon nanotube modified glassy carbon electrode. Bioelectrochemistry 80:114–120

    Google Scholar 

  • Petrofsky JS, Laymon M, Lee H (2013) Effect of heat and cold on tendon flexibility and force to flex the human knee. Med Sci Monit 19:661–667

    Google Scholar 

  • Petrone N, Meric I, Chari T, Shepard KL, Hone J (2015) Graphene field-effect transistors for radio-frequency flexible electronics. IEEE J Electron Devices Soc 3:44–48

    Google Scholar 

  • Pham X-H, Bui M-PN, Li CA, Han KN, Kim JH, Won H, Seong GH (2010) Electrochemical characterization of a single-walled carbon nanotube electrode for detection of glucose. Anal Chim Acta 671:36–40

    Google Scholar 

  • Polastre J, Szewczyk R, Culler D (2005) Telos: enabling ultra-low power wireless research. In: IPSN 2005. Fourth international symposium on information processing in sensor networks, 2005. IEEE, pp 364–369

    Google Scholar 

  • Polat EO, Kocabas C (2013) Broadband optical modulators based on graphene supercapacitors. Nano Lett 13:5851–5857

    Google Scholar 

  • Pop E, Varshney V, Roy AK (2012) Thermal properties of graphene: fundamentals and applications. MRS Bull 37:1273–1281

    Google Scholar 

  • Pospischil A, Humer M, Furchi MM, Bachmann D, Guider R, Fromherz T, Mueller T (2013) CMOS-compatible graphene photodetector covering all optical communication bands. Nat Photonics 7:892–896

    Google Scholar 

  • Pourasl AH, Ahmadi MT, Rahmani M, Chin HC, Lim CS, Ismail R, Tan MLP (2014) Analytical modeling of glucose biosensors based on carbon nanotubes. Nanoscale Res Lett 9:33

    Google Scholar 

  • Pradhan S, Murmu T (2009) Small scale effect on the buckling of single-layered graphene sheets under biaxial compression via nonlocal continuum mechanics. Comput Mater Sci 47:268–274

    Google Scholar 

  • Prolongo S, Moriche R, Jiménez-Suárez A, Sánchez M, Ureña A (2014) Advantages and disadvantages of the addition of graphene nanoplatelets to epoxy resins. Eur Polymer J 61:206–214

    Google Scholar 

  • Pu X et al (2015) A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics. Adv Mater 27:2472–2478

    Google Scholar 

  • Pumera M (2009) Electrochemistry of graphene: new horizons for sensing and energy storage. Chem Rec 9:211–223

    Google Scholar 

  • Pumera M (2011) Graphene in biosensing. Mater Today 14:308–315

    Google Scholar 

  • Pumera M, Ambrosi A, Bonanni A, Chng ELK, Poh HL (2010) Graphene for electrochemical sensing and biosensing. TrAC Trends Anal Chem 29:954–965

    Google Scholar 

  • Qin LC (1997) CVD synthesis of carbon nanotubes. J Mater Sci Lett 16:457–459. https://doi.org/10.1023/a:1018504108114

    Google Scholar 

  • Qin Y et al. (2015) Lightweight, superelastic, and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application. ACS Nano 9:8933–8941

    Google Scholar 

  • Qiu J-D, Zhou W-M, Guo J, Wang R, Liang R-P (2009) Amperometric sensor based on ferrocene-modified multiwalled carbon nanotube nanocomposites as electron mediator for the determination of glucose. Anal Biochem 385:264–269

    Google Scholar 

  • Rahman MSA, Mukhopadhyay SC, Yu P-L (2014) Novel sensors for food inspection: Modelling, fabrication and experimentation. Springer

    Google Scholar 

  • Raju APA, Lewis A, Derby B, Young RJ, Kinloch IA, Zan R, Novoselov KS (2014) Wide-area strain sensors based upon graphene-polymer composite coatings probed by Raman spectroscopy. Adv Func Mater 24:2865–2874

    Google Scholar 

  • Rao CEE, Sood AE, Subrahmanyam KE, Govindaraj A (2009) Graphene: the new two‐dimensional nanomaterial. Angew Chemie Int Ed 48:7752–7777

    Google Scholar 

  • Rasool HI, Song EB, Mecklenburg M, Regan B, Wang KL, Weiller BH, Gimzewski JK (2011) Atomic-scale characterization of graphene grown on copper (100) single crystals. J the Am Chem Soc 133:12536–12543

    Google Scholar 

  • Razmi H, Mohammad-Rezaei R (2013) Graphene quantum dots as a new substrate for immobilization and direct electrochemistry of glucose oxidase: application to sensitive glucose determination. Biosens Bioelectron 41:498–504

    Google Scholar 

  • Reddy ALM, Srivastava A, Gowda SR, Gullapalli H, Dubey M, Ajayan PM (2010) Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 4:6337–6342

    Google Scholar 

  • Roh E, Hwang B-U, Kim D, Kim B-Y, Lee N-E (2015) Stretchable, transparent, ultrasensitive, and patchable strain sensor for human–machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano 9:6252–6261

    Google Scholar 

  • Rose DP et al (2015) Adhesive RFID sensor patch for monitoring of sweat electrolytes. IEEE Trans Biomed Eng 62:1457–1465

    Google Scholar 

  • Rothmaier M, Luong MP, Clemens F (2008) Textile pressure sensor made of flexible plastic optical fibers. Sensors 8:4318–4329

    Google Scholar 

  • Roy I et al (2016) Synthesis and characterization of graphene from waste dry cell battery for electronic applications. RSC Adv 6:10557–10564

    Google Scholar 

  • Ruan G, Sun Z, Peng Z, Tour JM (2011) Growth of graphene from food, insects, and waste. ACS Nano 5:7601–7607

    Google Scholar 

  • Rumyantsev S, Liu G, Shur MS, Potyrailo RA, Balandin AA (2012) Selective gas sensing with a single pristine graphene transistor. Nano Lett 12:2294–2298

    Google Scholar 

  • Ryu S, Lee P, Chou JB, Xu R, Zhao R, Hart AJ, Kim S-G (2015) Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion. ACS Nano 9:5929–5936

    Google Scholar 

  • Sadasivuni KK, Kafy A, Zhai L, Ko HU, Mun S, Kim J (2015) Transparent and flexible cellulose nanocrystal/reduced graphene oxide film for proximity sensing. Small 11:994–1002

    Google Scholar 

  • Saetia K, Schnorr JM, Mannarino MM, Kim SY, Rutledge GC, Swager TM, Hammond PT (2014) Spray-layer-by-layer carbon nanotube/electrospun fiber electrodes for flexible chemiresistive sensor applications. Adv Func Mater 24:492–502

    Google Scholar 

  • Saito T, Matsushige K, Tanaka K (2002) Chemical treatment and modification of multi-walled carbon nanotubes. Physica B 323:280–283

    Google Scholar 

  • Sakhaee-Pour A (2009) Elastic properties of single-layered graphene sheet. Solid State Commun 149:91–95

    Google Scholar 

  • Sanli A, Benchirouf A, Müller C, Kanoun O (2017) Piezoresistive performance characterization of strain sensitive multi-walled carbon nanotube-epoxy nanocomposites. Sens Actuators, A 254:61–68

    Google Scholar 

  • Satake D, Ebi H, Oku N, Matsuda K, Takao H, Ashiki M, Ishida M (2002) A sensor for blood cell counter using MEMS technology. Sens Actuators B: Chem 83:77–81

    Google Scholar 

  • Sattari F (2015) Calculation of current density for graphene superlattice in a constant electric field. J Theor Appl Phys 9:81

    Google Scholar 

  • Schniepp HC et al (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110:8535–8539

    Google Scholar 

  • Schwartz G, Tee BC-K, Mei J, Appleton AL, Kim DH, Wang H, Bao Z (2013) Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat Commun 4:1859

    Google Scholar 

  • Seo H-K et al (2015) Value-added synthesis of graphene: recycling industrial carbon waste into electrodes for high-performance electronic devices. Sci Rep 5:16710

    Google Scholar 

  • Shan C, Yang H, Song J, Han D, Ivaska A, Niu L (2009) Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal Chem 81:2378–2382

    Google Scholar 

  • Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22:1027–1036

    Google Scholar 

  • Sheng Z-H, Zheng X-Q, Xu J-Y, Bao W-J, Wang F-B, Xia X-H (2012) Electrochemical sensor based on nitrogen doped graphene: simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens Bioelectron 34:125–131

    Google Scholar 

  • Shi J et al (2016) Graphene reinforced carbon nanotube networks for wearable strain sensors. Adv Func Mater 26:2078–2084

    Google Scholar 

  • Shim BS, Chen W, Doty C, Xu C, Kotov NA (2008) Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes. Nano Lett 8:4151–4157

    Google Scholar 

  • Shin U-H, Jeong D-W, Park S-M, Kim S-H, Lee HW, Kim J-M (2014) Highly stretchable conductors and piezocapacitive strain gauges based on simple contact-transfer patterning of carbon nanotube forests. Carbon 80:396–404

    Google Scholar 

  • Sibinski M, Jakubowska M, Sloma M (2010) Flexible temperature sensors on fibers. Sensors 10:7934–7946

    Google Scholar 

  • Sinnott SB, Andrews R (2001) Carbon nanotubes: synthesis, properties, and applications. Crit Rev Solid State Mater Sci 26:145–249

    Google Scholar 

  • Sohn I-Y, Kim D-J, Jung J-H, Yoon OJ, Thanh TN, Quang TT, Lee N-E (2013) pH sensing characteristics and biosensing application of solution-gated reduced graphene oxide field-effect transistors. Biosens Bioelectron 45:70–76

    Google Scholar 

  • Solanki PR, Kaushik A, Ansari AA, Tiwari A, Malhotra B (2009) Multi-walled carbon nanotubes/sol-gel-derived silica/chitosan nanobiocomposite for total cholesterol sensor. Sens Actuators B: Chem 137:727–735

    Google Scholar 

  • Somanathan T, Prasad K, Ostrikov KK, Saravanan A, Krishna VM (2015) Graphene oxide synthesis from agro waste. Nanomaterials 5:826–834

    Google Scholar 

  • Someya T, Sekitani T (2014) Bionic skins using flexible organic devices. In: 2014 IEEE 27th international conference on micro electro mechanical systems (MEMS), 2014. IEEE, pp 68–71

    Google Scholar 

  • Son D et al (2014) Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat Nanotechnol 9:397–404

    Google Scholar 

  • Song EY, Lee KB (2010) IEEE 1451.5 standard-based wireless sensor networks. In: Advances in wireless sensors and sensor networks. Springer, pp 243–271

    Google Scholar 

  • Song M-J, Hwang SW, Whang D (2010) Amperometric hydrogen peroxide biosensor based on a modified gold electrode with silver nanowires. J Appl Electrochem 40:2099–2105

    Google Scholar 

  • Song J, Wang X, Chang C-T (2014) Preparation and characterization of graphene oxide. J Nanomater

    Google Scholar 

  • Souri H, Nam I, Lee H (2015) Electrical properties and piezoresistive evaluation of polyurethane-based composites with carbon nano-materials. Compos Sci Technol 121:41–48

    Google Scholar 

  • Strauss M, Reynolds C, Hughes S, Park K, McDarby G, Picard RW (2005) The handwave bluetooth skin conductance sensor. In: International Conference on affective computing and intelligent interaction. Springer, pp 699–706

    Google Scholar 

  • Sudibya HG, He Q, Zhang H, Chen P (2011) Electrical detection of metal ions using field-effect transistors based on micropatterned reduced graphene oxide films. ACS Nano 5:1990–1994

    Google Scholar 

  • Sun C-L, Lee H-H, Yang J-M, Wu C-C (2011) The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites. Biosens Bioelectron 26:3450–3455

    Google Scholar 

  • Tadakaluru S, Thongsuwan W, Singjai P (2014) Stretchable and flexible high-strain sensors made using carbon nanotubes and graphite films on natural rubber. Sensors 14:868–876

    Google Scholar 

  • Takei K, Yu Z, Zheng M, Ota H, Takahashi T, Javey A (2014) Highly sensitive electronic whiskers based on patterned carbon nanotube and silver nanoparticle composite films. Proc Natl Acad Sci 111:1703–1707

    Google Scholar 

  • Takei K, Honda W, Harada S, Arie T, Akita S (2015) Toward flexible and wearable human-interactive health-monitoring devices. Adv Healthc Mater 4:487–500

    Google Scholar 

  • Tang SLP (2007) Recent developments in flexible wearable electronics for monitoring applications. Trans Inst Meas Control 29:283–300

    Google Scholar 

  • Tang L-C et al (2013) The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 60:16–27

    Google Scholar 

  • Tang Y, Zhao Z, Hu H, Liu Y, Wang X, Zhou S, Qiu J (2015) Highly stretchable and ultrasensitive strain sensor based on reduced graphene oxide microtubes-elastomer composite. ACS Appl Mater Interfaces 7:27432–27439

    Google Scholar 

  • Tao W, Liu T, Zheng R, Feng H (2012) Gait analysis using wearable sensors. Sensors 12:2255–2283

    Google Scholar 

  • The state of flexible and printed electronics. http://www.printedelectronicsnow.com/issues/2015-03-01/view_features/the-state-of-flexible-and-printed-electronics

  • The Wearable Technology Ecosystem: 2016–2030—Opportunities, challenges, strategies, industry verticals and forecasts. http://www.openpr.com/news/348933/The-Wearable-Technology-Ecosystem-2016-2030-Opportunities-Challenges-Strategies-Industry-Verticals-And-Forecasts.html?__hstc = 197865264.638cea001f4f55aadbd731e528921f0a.1482980112036.1482980112036.1482980112036.1&__hssc = 197865264.1.1482980112037&__hsfp = 1381054282

    Google Scholar 

  • Tian Y, Shumway BR, Meldrum DR (2010) A new cross-linkable oxygen sensor covalently bonded into poly (2-hydroxyethyl methacrylate)-co-polyacrylamide thin film for dissolved oxygen sensing. Chem Mater 22:2069–2078

    Google Scholar 

  • Tian H, Shu Y, Cui Y-L, Mi W-T, Yang Y, Xie D, Ren T-L (2014) Scalable fabrication of high-performance and flexible graphene strain sensors. Nanoscale 6:699–705

    Google Scholar 

  • Tjahyono AP, Aw KC, Devaraj H, Surendra W, Haemmerle E, Travas-Sejdic J (2013) A five-fingered hand exoskeleton driven by pneumatic artificial muscles with novel polypyrrole sensors. Ind Robot: Int J 40:251–260

    Google Scholar 

  • Trung TQ, Lee NE (2016) Flexible and stretchable physical sensor integrated platforms for wearable human‐activity monitoringand personal healthcare. Adv Mater

    Google Scholar 

  • Trung TQ, Tien NT, Kim D, Jung JH, Yoon OJ, Lee NE (2012) High thermal responsiveness of a reduced graphene oxide field-effect transistor. Adv Mater 24:5254–5260

    Google Scholar 

  • Trung TQ, Tien NT, Kim D, Jang M, Yoon OJ, Lee NE (2014) A flexible reduced graphene oxide field-effect transistor for ultrasensitive strain sensing. Adv Func Mater 24:117–124

    Google Scholar 

  • Unnikrishnan B, Palanisamy S, Chen S-M (2013) A simple electrochemical approach to fabricate a glucose biosensor based on graphene–glucose oxidase biocomposite. Biosens Bioelectron 39:70–75

    Google Scholar 

  • van den Brand J et al (2015) Flexible and stretchable electronics for wearable health devices. Solid-State Electron 113:116–120

    Google Scholar 

  • Vatani M, Engeberg ED, Choi J-W (2013) Force and slip detection with direct-write compliant tactile sensors using multi-walled carbon nanotube/polymer composites. Sens Actuators, A 195:90–97

    Google Scholar 

  • Vicarelli L et al (2012) Graphene field-effect transistors as room-temperature terahertz detectors. Nat Mater 11:865–871

    Google Scholar 

  • Vilela D, Romeo A, Sánchez S (2016) Flexible sensors for biomedical technology. Lab Chip 16:402–408

    Google Scholar 

  • Viry L, Derré A, Garrigue P, Sojic N, Poulin P, Kuhn A (2007) Carbon nanotube fiber microelectrodes: design, characterization, and optimization. J Nanosci Nanotechnol 7:3373–3377

    Google Scholar 

  • Viventi J et al. (2010) A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology. Sci Translational Med 2:24ra22–24ra22

    Google Scholar 

  • Wallace PR (1947) The band theory of graphite. Phys Rev 71:622

    Google Scholar 

  • Wang H (2009) Dispersing carbon nanotubes using surfactants. Curr Opin Colloid Interface Sci 14:364–371

    Google Scholar 

  • Wang H et al. (2010b) Mn3O4−graphene hybrid as a high-capacity anode material for lithium ion batteries. J Am Chem Soc 132:13978–13980

    Google Scholar 

  • Wang X et al. (2012c) N‐doped graphene‐SnO2 sandwich paper for high‐performance lithium‐ion batteries. Adv Funct Mater 22:2682–2690

    Google Scholar 

  • Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M, Shen YR (2008) Gate-variable optical transitions in graphene. Science 320:206–209

    Google Scholar 

  • Wang C, Zhang L, Guo Z, Xu J, Wang H, Zhai K, Zhuo X (2010) A novel hydrazine electrochemical sensor based on the high specific surface area graphene. Microchim Acta 169:1–6

    Google Scholar 

  • Wang K, Liu Q, Guan Q-M, Wu J, Li H-N, Yan J-J (2011a) Enhanced direct electrochemistry of glucose oxidase and biosensing for glucose via synergy effect of graphene and CdS nanocrystals. Biosens Bioelectron 26:2252–2257

    Google Scholar 

  • Wang Y, Yang R, Shi Z, Zhang L, Shi D, Wang E, Zhang G (2011b) Super-elastic graphene ripples for flexible strain sensors. ACS Nano 5:3645–3650

    Google Scholar 

  • Wang H, Hsu AL, Palacios T (2012a) Graphene electronics for RF applications. IEEE Microwave Mag 13:114–125

    Google Scholar 

  • Wang K, Wu J, Liu Q, Jin Y, Yan J, Cai J (2012b) Ultrasensitive photoelectrochemical sensing of nicotinamide adenine dinucleotide based on graphene-TiO2 nanohybrids under visible irradiation. Anal Chim Acta 745:131–136

    Google Scholar 

  • Wang X, Gu Y, Xiong Z, Cui Z, Zhang T (2014a) Silk‐molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv Mater 26:1336–1342

    Google Scholar 

  • Wang Y et al (2014b) Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv Func Mater 24:4666–4670

    Google Scholar 

  • Wang Z et al (2014c) An ionic liquid-modified graphene based molecular imprinting electrochemical sensor for sensitive detection of bovine hemoglobin. Biosens Bioelectron 61:391–396

    Google Scholar 

  • Wang J et al (2015a) A highly sensitive and flexible pressure sensor with electrodes and elastomeric interlayer containing silver nanowires. Nanoscale 7:2926–2932

    Google Scholar 

  • Wang W, Yang T, Zhu H, Zheng Q (2015b) Bio-inspired mechanics of highly sensitive stretchable graphene strain sensors. Appl Phys Lett 106:171903

    Google Scholar 

  • Wang Y et al (2015c) Ultra-sensitive graphene strain sensor for sound signal acquisition and recognition. Nano Res 8:1627–1636

    Google Scholar 

  • Wang Y, Mi H, Zheng Q, Zhang H, Ma Z, Gong S (2016) Highly stretchable and sensitive piezoresistive carbon nanotube/elastomeric triisocyanate-crosslinked polytetrahydrofuran nanocomposites. J Mater Chem C 4:460–467

    Google Scholar 

  • Wei W, Pallecchi E, Belhaj M, Centeno A, Amaia Z, Vignaud D, Happy H (2016) Graphene field effect transistors on flexible substrate: stable process and high RF performance. In: 2016 11th European microwave integrated circuits conference (EuMIC), 2016. IEEE, pp 165–168

    Google Scholar 

  • Wen Y, Li FY, Dong X, Zhang J, Xiong Q, Chen P (2013) The electrical detection of lead ions using gold-nanoparticle-and DNAzyme-functionalized graphene device. Adv Healthc Mater 2:271–274

    Google Scholar 

  • Woehrl N, Ochedowski O, Gottlieb S, Shibasaki K, Schulz S (2014) Plasma-enhanced chemical vapor deposition of graphene on copper substrates. AIP Adv 4:047128

    Google Scholar 

  • Wong ACW et al. (2008) A 1 V wireless transceiver for an ultra-low-power SoC for biotelemetry applications. IEEE J Solid-State Circ 43:1511–1521

    Google Scholar 

  • Wu Y et al (2011a) High-frequency, scaled graphene transistors on diamond-like carbon. Nature 472:74–78

    Google Scholar 

  • Wu Z-S, Ren W, Gao L, Liu B, Jiang C, Cheng H-M (2009) Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 47:493–499

    Google Scholar 

  • Wu J-F, Xu M-Q, Zhao G-C (2010a) Graphene-based modified electrode for the direct electron transfer of cytochrome c and biosensing. Electrochem Commun 12:175–177

    Google Scholar 

  • Wu P, Shao Q, Hu Y, Jin J, Yin Y, Zhang H, Cai C (2010b) Direct electrochemistry of glucose oxidase assembled on graphene and application to glucose detection. Electrochim Acta 55:8606–8614

    Google Scholar 

  • Wu Z-S, Ren W, Xu L, Li F, Cheng H-M (2011) Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 5:5463–5471

    Google Scholar 

  • Wu S, He Q, Tan C, Wang Y, Zhang H (2013) Graphene-based electrochemical sensors. Small 9:1160–1172

    Google Scholar 

  • Wu ZS, Liu Z, Parvez K, Feng X, Müllen K (2015) Ultrathin printable graphene supercapacitors with AC line-filtering performance. Adv Mater 27:3669–3675

    Google Scholar 

  • Xia F, Mueller T, Lin Y-m, Valdes-Garcia A, Avouris P (2009) Ultrafast graphene photodetector. Nat Nanotechnol 4:839–843

    Google Scholar 

  • Xiang L, Wang Z, Liu Z, Weigum SE, Yu Q, Chen MY (2016) Inkjet-printed flexible biosensor based on graphene field effect transistor. IEEE Sens J 16:8359–8364

    Google Scholar 

  • Xiao X et al (2011) High-strain sensors based on ZnO nanowire/polystyrene hybridized flexible films. Adv Mater 23:5440–5444

    Google Scholar 

  • Xiao X et al (2012) Fiber-based all-solid-state flexible supercapacitors for self-powered systems. ACS Nano 6:9200–9206

    Google Scholar 

  • Xu Z, Gao C (2015) Graphene fiber: a new trend in carbon fibers. Mater Today 18:480–492

    Google Scholar 

  • Xu R et al (2014) Facile fabrication of three-dimensional graphene foam/poly (dimethylsiloxane) composites and their potential application as strain sensor. ACS Appl Mater Interfaces 6:13455–13460

    Google Scholar 

  • Xu F, Zhu Y (2012) Highly conductive and stretchable silver nanowire conductors. Adv Mater 24:5117–5122

    Google Scholar 

  • Xu Y, Bai H, Lu G, Li C, Shi G (2008) Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc 130:5856–5857

    Google Scholar 

  • Xu Y et al (2011) In-plane and tunneling pressure sensors based on graphene/hexagonal boron nitride heterostructures. Appl Phys Lett 99:133109

    Google Scholar 

  • Xu H et al (2013) Graphene-based nanoprobes and a prototype optical biosensing platform. Biosens Bioelectron 50:251–255

    Google Scholar 

  • Graphene market overview. https://www.alliedmarketresearch.com/graphene-market

  • Graphene market reports. https://www.graphene-info.com/tags/market-reports

  • Graphene market trends. http://www.strategyr.com/MarketResearch/Graphene_Market_Trends.asp

  • Graphene sensors: introduction and market status. https://www.graphene-info.com/graphene-sensors

  • Power of graphene activity. http://www.discovere.org/sites/default/files/Power%20of%20Graphene%20activity.pdf

  • Use of graphene in planes. http://www.graphene.manchester.ac.uk/discover/video-gallery/what-is-graphene/graphene-planes/

  • Yamada T, Hayamizu Y, Yamamoto Y, Yomogida Y, Izadi-Najafabadi A, Futaba DN, Hata K (2011) A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol 6:296–301

    Google Scholar 

  • Yan C et al (2014) Highly stretchable piezoresistive graphene–nanocellulose nanopaper for strain sensors. Adv Mater 26:2022–2027

    Google Scholar 

  • Yang L, Liu D, Huang J, You T (2014) Simultaneous determination of dopamine, ascorbic acid and uric acid at electrochemically reduced graphene oxide modified electrode. Sens and Actuators B: Chem 193:166–172

    Google Scholar 

  • Yao S, Zhu Y (2014) Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale 6:2345–2352

    Google Scholar 

  • Yavari F, Koratkar N (2012) Graphene-based chemical sensors. J Phys Chem Lett 3:1746–1753

    Google Scholar 

  • Ye Y, Kong T, Yu X, Wu Y, Zhang K, Wang X (2012) Enhanced nonenzymatic hydrogen peroxide sensing with reduced graphene oxide/ferroferric oxide nanocomposites. Talanta 89:417–421

    Google Scholar 

  • Yeo JC, Lim CT (2016) Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications. Microsyst Nanoeng 2:16043

    Google Scholar 

  • Yi M, Shen Z (2015) A review on mechanical exfoliation for the scalable production of graphene. J Mater Chem A 3:11700–11715

    Google Scholar 

  • Yin Y, Talapin D (2013) The chemistry of functional nanomaterials. Chem Soc Rev 42:2484–2487

    Google Scholar 

  • Yin J, Qi X, Yang L, Hao G, Li J, Zhong J (2011) A hydrogen peroxide electrochemical sensor based on silver nanoparticles decorated silicon nanowire arrays. Electrochim Acta 56:3884–3889

    Google Scholar 

  • Yoo J, Yan L, Lee S, Kim H, Yoo H-J (2009) A wearable ECG acquisition system with compact planar-fashionable circuit board-based shirt. IEEE Trans Inf Technol Biomed 13:897–902

    Google Scholar 

  • Yoo J, Yan L, Lee S, Kim Y, Yoo H-J (2010) A 5.2 mw self-configured wearable body sensor network controller and a 12 w wirelessly powered sensor for a continuous health monitoring system. IEEE J Solid-State Circ 45:178–188

    Google Scholar 

  • Yoo JJ et al (2011) Ultrathin planar graphene supercapacitors. Nano Lett 11:1423–1427

    Google Scholar 

  • You Y, Zeng W, Yin Y-X, Zhang J, Yang C-P, Zhu Y, Guo Y-G (2015) Hierarchically micro/mesoporous activated graphene with a large surface area for high sulfur loading in Li–S batteries J Mater Chem A 3:4799–4802

    Google Scholar 

  • Yu X, Rajamani R, Stelson K, Cui T (2006) Carbon nanotube-based transparent thin film acoustic actuators and sensors. Sens Actuators, A 132:626–631

    Google Scholar 

  • Yuan B, Xu C, Deng D, Xing Y, Liu L, Pang H, Zhang D (2013) Graphene oxide/nickel oxide modified glassy carbon electrode for supercapacitor and nonenzymatic glucose sensor. Electrochim Acta 88:708–712

    Google Scholar 

  • Zaaba N, Foo K, Hashim U, Tan S, Liu W-W, Voon C (2017) Synthesis of graphene oxide using modified Hummers method: solvent influence. Proc Eng 184:469–477

    Google Scholar 

  • Zang Y, Zhang F, Di C-A, Zhu D (2015) Advances of flexible pressure sensors toward artificial intelligence and health care applications. Mater Horiz 2:140–156

    Google Scholar 

  • Zelada-Guillén GA, Sebastián-Avila JL, Blondeau P, Riu J, Rius FX (2012) Label-free detection of Staphylococcus aureus in skin using real-time potentiometric biosensors based on carbon nanotubes and aptamers. Biosens Bioelectron 31:226–232

    Google Scholar 

  • Zeng Q, Cheng J-S, Liu X-F, Bai H-T, Jiang J-H (2011) Palladium nanoparticle/chitosan-grafted graphene nanocomposites for construction of a glucose biosensor. Biosens Bioelectron 26:3456–3463

    Google Scholar 

  • Zeng W, Shu L, Li Q, Chen S, Wang F, Tao XM (2014) Fiber‐based wearable electronics: a review of materials, fabrication, devices, and applications. Adv Mater 26:5310–5336

    Google Scholar 

  • Zhan B, Li C, Yang J, Jenkins G, Huang W, Dong X (2014) Graphene field-effect transistor and its application for electronic sensing. Small 10:4042–4065

    Google Scholar 

  • Zhang S et al (2015a) Highly stretchable, sensitive, and flexible strain sensors based on silver nanoparticles/carbon nanotubes composites. J Alloys Compd 652:48–54

    Google Scholar 

  • Zhang Y et al (2001) Electric-field-directed growth of aligned single-walled carbon nanotubes. Appl Phys Lett 79:3155–3157

    Google Scholar 

  • Zhang T, Cheng Z, Wang Y, Li Z, Wang C, Li Y, Fang Y (2010) Self-assembled 1-octadecanethiol monolayers on graphene for mercury detection. Nano Lett 10:4738–4741

    Google Scholar 

  • Zhang Y, Wang Y, Jia J, Wang J (2012) Nonenzymatic glucose sensor based on graphene oxide and electrospun NiO nanofibers. Sens Actuators B: Chem 171:580–587

    Google Scholar 

  • Zhang M, Yuan R, Chai Y, Wang C, Wu X (2013) Cerium oxide–graphene as the matrix for cholesterol sensor. Anal Biochem 436:69–74

    Google Scholar 

  • Zhang Z et al (2015) Hydrogen gas sensor based on metal oxide nanoparticles decorated graphene transistor. Nanoscale 7:10078–10084

    Google Scholar 

  • Zhao J et al (2012) Ultra-sensitive strain sensors based on piezoresistive nanographene films. Appl Phys Lett 101:063112

    Google Scholar 

  • Zhao S, Zhang G, Gao Y, Deng L, Li J, Sun R, Wong C-P (2014) Strain-driven and ultrasensitive resistive sensor/switch based on conductive alginate/nitrogen-doped carbon-nanotube-supported Ag hybrid aerogels with pyramid design. ACS Appl Mater Interfaces 6:22823–22829

    Google Scholar 

  • Zhao S et al (2016a) Percolation threshold-inspired design of hierarchical multiscale hybrid architectures based on carbon nanotubes and silver nanoparticles for stretchable and printable electronics. J Mater Chem C 4:6666–6674

    Google Scholar 

  • Zhao Y, Li X-G, Zhou X, Zhang Y-N (2016b) Review on the graphene based optical fiber chemical and biological sensors. Sens Actuators B: Chem 231:324–340

    Google Scholar 

  • Zhong J, Zhang Y, Zhong Q, Hu Q, Hu B, Wang ZL, Zhou J (2014) Fiber-based generator for wearable electronics and mobile medication. ACS Nano 8:6273–6280

    Google Scholar 

  • Zhou G et al (2010) Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater 22:5306–5313

    Google Scholar 

  • Zhou M, Zhai Y, Dong S (2009) Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal Chem 81:5603–5613

    Google Scholar 

  • Zhou C, Shu Y, Yang Y, Jin H, Dong S-R, Chan M, Ren T-L (2015) Flexible structured high-frequency film bulk acoustic resonator for flexible wireless electronics. J Micromech Microeng 25:055003

    Google Scholar 

  • Zhou K, Gui Z, Hu Y (2016) The influence of graphene based smoke suppression agents on reduced fire hazards of polystyrene composites. Compos A Appl Sci Manuf 80:217–227

    Google Scholar 

  • Zhou J, Xu X, Yu H, Lubineau G (2017a) Deformable and wearable carbon nanotube microwire-based sensors for ultrasensitive monitoring of strain, pressure and torsion. Nanoscale 9:604–612

    Google Scholar 

  • Zhou J, Yu H, Xu X, Han F, Lubineau G (2017b) Ultrasensitive stretchable strain sensors based on fragmented carbon nanotube papers. ACS Appl Mater Interfaces 9:4835–4842

    Google Scholar 

  • Zhu Y, Koley G, Walsh K, Galloway A, Ortinski P (2016) Application of ion-senstitive field effect transistors for measuring glial cell K+ transport. In: SENSORS, 2016 IEEE, pp 1–3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anindya Nag .

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Nag, A., Mukhopadhyay, S.C., Kosel, J. (2019). Literature Review. In: Printed Flexible Sensors. Smart Sensors, Measurement and Instrumentation, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-030-13765-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13765-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13764-9

  • Online ISBN: 978-3-030-13765-6

  • eBook Packages: EngineeringEngineering (R0)