Binomial Model for European Options

  • Jürgen Franke
  • Wolfgang Karl Härdle
  • Christian Matthias Hafner
Part of the Universitext book series (UTX)


A large range of options exist for which the boundary conditions of the Black–Scholes differential equation are too complex to solve analytically, an example being the American option.


  1. Baxter, M., & Rennie, A. (1996). Financial calculus: An introduction to derivative pricing. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  2. Cox, J., Ross, S., & Rubinstein, M. (1979). Option pricing: a simplified approach. Journal of Financial Economics, 7, 229–263.MathSciNetCrossRefGoogle Scholar
  3. Dewynne, J., Howison, S., & Wilmott, P. (1993). Mathematical models and computation. Oxford University Press.zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jürgen Franke
    • 1
  • Wolfgang Karl Härdle
    • 2
  • Christian Matthias Hafner
    • 3
  1. 1.Department of MathematicsTechnische Universität KaiserslauternKaiserslauternGermany
  2. 2.Ladislaus von Bortkiewicz Chair of StatisticsHumboldt-Universität BerlinBerlinGermany
  3. 3.Louvain Institute of Data Analysis and Modeling in Economics and StatisticsUCLouvainLouvain-la-NeuveBelgium

Personalised recommendations