Skip to main content

Feeding in Cartilaginous Fishes: An Interdisciplinary Synthesis

Part of the Fascinating Life Sciences book series (FLS)

Abstract

Fishes, and elasmobranchs in particular, are often described as “opportunistic” predators meaning that they will take advantage of feeding opportunities as they arise. The implication of this term is that elasmobranchs are not selective about what they eat, which is a gross oversimplification of the complex interactions that shape diet, many of which are driven by interactions of an organism’s physiology, ecology, and behavior.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-13739-7_8
  • Chapter length: 65 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-13739-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 8.1
Fig. 8.2
Fig. 8.3

Modified from McGowan and Kajiura (2009)

Fig. 8.4

Reproduced with permission from Ginter and Maisey (2007)

Fig. 8.5

Reproduced with permission from Wilga (2002)

Fig. 8.6

Reproduced with permission from Dean and Motta (2004)

Fig. 8.7

Reproduced with permission from Fishbeck and Sebastiani (2008)

Fig. 8.8
Fig. 8.9

Reproduced with permission from Motta et al. (2010)

Fig. 8.10

Reproduced with permission via Creative Commons user license (https://creativecommons.org/licenses/by-nc-nd/4.0/) from Liu et al. (2014)

Fig. 8.11
Fig. 8.12
Fig. 8.13
Fig. 8.14
Fig. 8.15

Reproduced with permission from Ramsay and Wilga 2007

Fig. 8.16

Reproduced with permission from Ramsay et al. (2015)

Fig. 8.17

Reproduced with permission from Papastamatiou 2007

Fig. 8.18

References

  • Ajemian MJ, Sanford CP (2007) Food capture kinematics in the deep–water chain catshark Scliorhinus retifer. J Mar Biol Ass UK 87:1277–1286

    Google Scholar 

  • Ajemian MJ, Powers SP, Murdoch TJT (2012) Estimating the potential impacts of large mesopredators on benthic resources: integrative assessment of spotted eagle ray foraging ecology in Bermuda. PLOSone. http://dx.doi.org/10.1371/journal.pone.0040227

  • Anderson WG, Dasiewicz PJ, Liban S et al (2010) Gastro-intestinal handling of water and solutes in three species of elasmobranch fish, the white-spotted bamboo shark, Chiloscyllium plagiosum, little skate, Leucoraja erinacea and the clear nose skate Raja eglanteria. Comp Biochem Physiol A 155:493–502

    Google Scholar 

  • Andreev PS (2010) Enameloid microstructure of the serrated cutting edges in certain fossil carcharhiniform and lamniform sharks. Microsc Res Tech 73:704–713

    PubMed  Google Scholar 

  • Andrews PLR, Young JZ (1993) Gastric motility patterns for digestion and vomiting evoked by sympathetic nerve stimulation and 5-hydroxytryptamine in the dogfish Scyliorhinus canicula. Phil Trans Roy Soc Lond B342:363–380

    Google Scholar 

  • Armstrong JB, Schindler DE (2011) Excess digestive capacity in predators reflects a life of feast and famine. Nature 476:84–87

    CAS  PubMed  Google Scholar 

  • Aronson LR, Aronson FR, Clark E (1967) Instrumental conditioning and light-dark discrimination in young nurse sharks. Bull Mar Sci 17:249–256

    Google Scholar 

  • Atkins AG (2016) Slice-push, formation of grooves and the scale effect in cutting. Interface Focus 6:20160019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Atema J (1996) Eddy chemotaxis and odor landscapes: exploration of nature with animal sensors. Biol Bull 191:129–138

    CAS  PubMed  Google Scholar 

  • Atema J (2012) Aquatic odor dispersal fields: opportunities and limits of detection, communication and navigation. In: Bronmark C, Hansson LA (eds) Chemical ecology in aquatic systems. Oxford University Press, Oxford, UK, pp 1–18

    Google Scholar 

  • Atkinson CJL, Collin SP (2012) Structure and topographic distribution of oral denticles in elasmobranch fishes. Biol Bull 222:26–34

    PubMed  Google Scholar 

  • Baker CF, Montgomery JC, Dennis TE (2002) The sensory basis of olfactory search behavior in banded kokopu (Galaxias fasciatus). J Comp Physiol A 188:553–560

    Google Scholar 

  • Balaban JP, Summers AP, Wilga CA (2015) Mechanical properties of the hyomandibula in four shark species. J Exp Zool A Ecol Genet Physiol. 23(1):1–9

    Google Scholar 

  • Banner A (1972) Use of sound in predation by young lemon sharks, Negaprion brevirostris (Poey). Bull Mar Sci 22:251–283

    Google Scholar 

  • Barak MM, Lieberman DE, Hublin J (2011) A Wolff in sheep’s clothing: trabecular bone adaptation in response to changes in joint loading orientation. Bone 49:1141–1151

    PubMed  Google Scholar 

  • Bateson W (1890) The sense-organs and perceptions of fishes; with some remarks on the supply of bait. J Mar Biol Assoc UK NS 1:225–256

    Google Scholar 

  • Bedore CN, Harris LJ, Kajiura SM (2014) Behavioral responses of batoid elasmobranchs to prey-simulating electric fields are correlated to peripheral sensory morphology and ecology. Zoology 117:95–103

    PubMed  Google Scholar 

  • Bedore CN, Kajiura SM (2013) Bioelectric fields of marine organisms: voltage and frequency contributions to detectability by electroreceptive predators. Physiol Biochem Zool 86:298–311

    PubMed  Google Scholar 

  • Belbenoit P (1986) Fine analysis of predatory and defensive motor events in Torpedo marmorata (Pisces). J Exp Biol 121:197–226

    Google Scholar 

  • Bethea DM, Hale L, Carlson JK et al (2007) Geographic and ontogenetic variation in the diet and daily ration of the bonnethead shark, Sphyrna tiburo, from the eastern Gulf of Mexico. Mar Biol 152:1009–1020

    Google Scholar 

  • Bethea DM, Smith KL, Casselberry GA et al (2015) Shark nursery grounds and essential fish habitat studies. GULFSPAN survey—2014. Report to NOAA fisheries, highly migratory species division. National Marine Fisheries Service, Panama City, FL, p 46

    Google Scholar 

  • Bigelow HB, Schroeder WC (1953) Sharks, sawfishes, guitarfishes, skates and rays. Chimaeroids. In: Tee-Van J, Breder CM, Hildebrand SF et al (eds) Fishes of the Western North Atlantic. Part 2. Sears Foundation for Marine Research, Yale University, New Haven, pp 1–514

    Google Scholar 

  • Blonder BI, Alevizon WS (1988) Prey discrimination and electroreception in the stingray Dasyatis sabina. Copeia 1988:33–36

    Google Scholar 

  • Bomgren P, Jonsson AC (1996) Basal H2-receptor stimulated and pH-dependent acid secretion from an isolated stomach mucosa preparation of the cod, Gadus morhua, studied using a modified pH-static titration method. Fish Physiol Biochem 15:275–285

    CAS  PubMed  Google Scholar 

  • Bush AC, Holland KN (2002) Food limitation in a nursery area: estimates of daily ration in juvenile scalloped hammerheads, Sphyrna lewini, in Kaneohe bay, Oahu. J Exp Mar Bio Ecol 278:157–178

    Google Scholar 

  • Campbell G (1975) Inhibitory vagal innervation of the stomach in fish. Comp Biochem Physiol C 50:169–170

    CAS  PubMed  Google Scholar 

  • Cappetta H (1987) Chondrichthyes II. Handbook of paleoichthyology. Gustav Fischer Verlag, New York

    Google Scholar 

  • Cappetta H (2012) Chondrichthyes. Mesozoic and cenozoic elasmobranchii: teeth. Gustav Fischer Verlag, New York

    Google Scholar 

  • Carter DR, Wong M (2003) Modelling cartilage mechanobiology. Philos Trans R Soc Lond B Biol Sci 358:1461–1471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chatchavalvanich K, Marcos R, Poonpriom J et al (2006) Histology of the digestive tract of the freshwater stingray Himantura signifer. Anat Embryol 211:507–518

    PubMed  Google Scholar 

  • Chen P, Lin AYM, Lin YS et al (2008) Structure and mechanical properties of selected biological materials. J Mech Beh Biomed Mat 1:208–226

    Google Scholar 

  • Cicimurri D (2000) Early cretaceous elasmobranchs from the Newcastle Sandstone (Albian) of Crook County, Wyoming. Mount Geol 37:101–107

    Google Scholar 

  • Cicimurri D (2004) Late cretaceous chondrichthyans from the carlie shale (Middle Turonian to Early Coniacian) of the black hills region, South Dakota and Wyoming. Mount Geol 41:1–16

    Google Scholar 

  • Clark E (1963) Maintenance of sharks in captivity with a report on their instrumental conditioning. In: Gilbert PW (ed) Sharks and Survival. DC Heath, Boston, pp 115–149

    Google Scholar 

  • Compagno LJV (1984) FAO species catalogue. Sharks of the world. An annotated and illustrated catalogue of shark species known to date, part 2: carcharhiniformes. Food and agriculture organization of the United Nations, Rome

    Google Scholar 

  • Compagno LJV (1988) Sharks of the order Carcharhiniformes. Princeton University Press, Princeton

    Google Scholar 

  • Cook MH, Neal HV (1921) Are taste buds of elasmobranchs endodermal in origin? J Comp Neurol 33:45–63

    Google Scholar 

  • Coombs S, Anderson E, Braun CB et al (2007) The hydrodynamic footprint of a benthic, sedentary fish in unidirectional flow. J Acoust Soc Am 122:1227–1237

    PubMed  Google Scholar 

  • Corn KA, Farina SC, Brash, J et al (2016) Modelling tooth-prey interactions in sharks: the importance of dynamic testing. R Soc Open Sci. https://doi.org/10.1098/rsos.160141

    PubMed  PubMed Central  Google Scholar 

  • Cornett AD (2006) Ecomorphology of shark electroreceptors. MS Thesis. Florida Atlantic University

    Google Scholar 

  • Cortés E, Manire CA, Hueter RE (1996) Diet, feeding habits, and diel feeding chronology of the bonnethead shark, Sphyrna tiburo, in southwest Florida. Bull Mar Sci 58:353–367

    Google Scholar 

  • Crofts SB, Summers AP (2014) How to best smash a snail: the effect of tooth shape on crushing load. J R Soc Inter 11:20131053

    CAS  Google Scholar 

  • Currey JD (1998) Mechanical properties of vertebrate hard tissues. J Eng Med 212(6):399–411

    CAS  Google Scholar 

  • Currey J (2008) Collagen and the mechanical properties of bone and calcified cartilage. In: Fratzl P (ed) Collagen: structure and mechanics. Springer Science + Business Media, New York, pp 397–420

    Google Scholar 

  • de Sousa Rangel B, Ciena AP, Wosnick N et al (2016) Ecomorphology of oral papillae and denticles of Zapteryx brevirostris (Chondrichthyes, Rhinobatidae). Zoomorphol 135:189–195

    Google Scholar 

  • Dean M, Motta PJ (2004) Feeding behavior and kinematics of the lesser electric ray, Narcine brasiliensis (Elasmobranchii: Batoidea). Zoology 107:171–189

    PubMed  Google Scholar 

  • Dean M, Huber D, Nance H (2006) Functional morphology of jaw trabeculation in the lesser electric ray Narcine brasiliensis, with comments on the evolution of structural support in the Batoidea. J Morphol 267:1137–1146

    PubMed  Google Scholar 

  • Dean MN, Summers AP (2006) Mineralized cartilage in the skeleton of chondrichthyan fishes. Zoology 109:164–168

    PubMed  Google Scholar 

  • Dean MN, Bizzarro JJ, Summers AP (2007) The evolution of cranial design, diet, and feeding mechanisms in batoids fishes. Integ Comp Biol 47:70–81

    Google Scholar 

  • Dean MN, Ramsay JB, Schaefer JT (2008) Tooth reorientation affects tooth function during prey processing and tooth ontogeny in the lesser electric ray, Narcine brasiliensis. Zoology 111:123–134

    PubMed  Google Scholar 

  • Dean MN, Mull CG, Gorb SN et al (2009) Ontogeny of the tesselated skeleton: Insight from the skeletal growth of the round stingray Urobatis halleri. J Anat 215:227–239

    PubMed  PubMed Central  Google Scholar 

  • Dehnhardt G, Mauck B, Hanke W et al (2001) Hydrodynamic trail-following in harbor seals (Phoca vitulina). Science 293:102–104

    CAS  PubMed  Google Scholar 

  • Derby CD, Zimmer RK (2012) Neuroecology of predator-prey interactions. In: Bronmark C, Hansson LA (eds) Chemical ecology in aquatic systems. Oxford University Press, Oxford, pp 158–171

    Google Scholar 

  • Didier DA (1995) Phylogenetic systematics of extant chimaeroid fishes (Holocephali, Chimeroidei). Amer Mus Novit 3119:1–86

    Google Scholar 

  • Didier DA, Kempter JM, Ebert DA (2012) Phylogeny, biology, and classification of extant holocephalans. In: Carrier JC, Musick JA, Heithaus MR (eds) Biology of Sharks and their relatives, 2nd edn. CRC Press, New York, pp 97–122

    Google Scholar 

  • Dingerkus G, Seret B, Guilbert E (1991) Multiple prismatic calcium phosphate layers in the jaws of present–day sharks (Chondrichthyes; Selachii). Experientia 47:38–40

    CAS  PubMed  Google Scholar 

  • Di Santo V, Bennett WA (2011) Is post-feeding thermotaxis advantageous in elasmobranch fishes? J Fish Biol 78:195–207

    PubMed  Google Scholar 

  • Domenici P, Blake RW (2000) Biomechanics in behaviour. In: Domenici P, Blake RW (eds) Biomechanics in animal behaviour. BIOS Scientific Publishers Ltd, Oxford, pp 1–17

    Google Scholar 

  • Dove ADM (2015) Foraging and investigative behaviors of whale sharks, Rhincodon typus, in response to chemical stimulus cues. Biol Bull 228:65–74

    PubMed  Google Scholar 

  • Duffin CJ, Cuny G (2008) Carcharopsis prototypus and the adaptations of single crystallite enameloid in cutting dentitions. Acta Geol Polon 58:181–184

    Google Scholar 

  • Dumont ER, Dávalos LM, Goldberg A et al (2012) Morphological innovation, diversification and invasion of a new adaptive zone. Proc R Soc B 79:1797–1805

    Google Scholar 

  • Duntley SQ (1963) Light in the sea. J Opt Soc Am 53:214–233

    Google Scholar 

  • Dwyer SL, Visser IN (2011) Cookie cutter shark (Isistius sp.) bites on cetaceans, with particular reference to killer whales (Orca) (Orcinus orca). Aquat Mamm 37(2):111–138

    Google Scholar 

  • Eames BF, Allen N, Young J et al (2007) Skeletogenesis in the swell shark Cephaloscyllium ventriosum. J Anat 210:542–554

    PubMed  PubMed Central  Google Scholar 

  • Ellis JR, ShackleySE (1995) Ontogenetic changes and sexual dimoprhism in the head, mouth and teeth of the lesser spotted dogfish. J Fish Biol 47:155–164

    Google Scholar 

  • Enault S, Muñoz DN, Silva WTAF et al (2015) Molecular footprinting of skeletal tissues in the catshark Scyliorhinus canicula and the clawed frog Xenopus tropicalis identifies conserved and derived features of vertebrate calcification. Front Genet 6:1–14

    Google Scholar 

  • Fahle SR, Thomason JC (2008) Measurement of jaw viscoelasticity in newborn and adult lesser spotted dogfish Scyliorhinus canicula (L., 1758). J Fish Biol 72:1553–1557

    Google Scholar 

  • Fairfax D (1998) The Basking Shark in Scotland: natural history, fishery and conservation. Tuckwell Press Ltd

    Google Scholar 

  • Fallows C, Fallows M, Hammerschlag N (2016) Effects of lunar phase on predator-prey interactions between white shark (Carcharodon carcharias) and Cape fur seals (Arctocephalus pusillus pusillus). Env Biol Fish 99(11):805–812

    Google Scholar 

  • Fange R, Lundbland G, Lind J et al (1979) Chitinolytic enzymes in the digestive system of marine fishes. Mar Biol 53:317–321

    Google Scholar 

  • Fedducia A, Slaughter BH (1974) Sexual dimorphism in skates (Rajidae) and its possible role in differential niche utilization. Evolution 28:164–168

    Google Scholar 

  • Ferguson A, Huber D, Motta P (2015) Feeding performance of king mackerel Scomberomorus cavalla. J Exp Zool A 323(7):399–413

    Google Scholar 

  • Ferrando S, Gallus L, Gambardella C et al (2012) First detection of taste buds in a chimaeroid fish (Chondrichthyes: Holocephali) and their Gαi-like immunoreactivity. Neurosci Lett 517:98–101

    CAS  PubMed  Google Scholar 

  • Ferrara TL, Clausen P, Huber DR et al (2011) Mechanics of biting in great white and sandtiger sharks. J Biomech 44(3):430–435

    CAS  PubMed  Google Scholar 

  • Ferrara TL, Boughton P, Slavich E et al (2013) A novel method for single sample multi-axial nanoindentation of hydrated heterogeneous tissues based on testing great white shark jaws. PLoS ONE 8(11):e81196

    PubMed  PubMed Central  Google Scholar 

  • Ferry-Graham LA (1998) Effects of prey size and mobility on prey-capture kinematics in leopard sharks Triakis semifasciata. J Exp Biol 201:2433–2444

    Google Scholar 

  • Ferry-Graham LA, Gibb AC (2001) Comparison of fasting and postfeeding metabolic rates in a sedentary shark, Cephaloscyllium ventriosum. Copeia 4:1108–1113

    Google Scholar 

  • Ferry-Graham LA, Bolnick DI, Wainwright PC (2002) Using functional morphology to examine the ecology and evolution of specialization. Int Comp Biol 42(2):265–277

    Google Scholar 

  • Fields RD, Bullock TH, Lange GD (1993) Ampullary sense organs, peripheral, central, and behavioral electroreception in chimaeras (Hydrolagus, Holocephali, Chondrichthyes). Brain Behav Evol 41:269–289

    CAS  PubMed  Google Scholar 

  • Fields RD, Lange GD (1980) Electroreception in the ratfish (Hydrolagus colliei). Science 207:547–548

    CAS  PubMed  Google Scholar 

  • Fishbeck DW, Sebastiani AS (2008) Manual of Vertebrate dissection: comparative anatomy, 2nd edn. Morton Publishing, Englewood, CO

    Google Scholar 

  • Fouts WR, Nelson DR (1999) Prey capture by the Pacific angle shark, Squatina californica: visually mediated strikes and ambush-site characteristics. Copeia 1999:304–312

    Google Scholar 

  • Frazzetta TH (1988) The mechanics of cutting and the form of shark teeth (Chondrichthyes: Elasmobranchii). Zoomorphol 108:93–107

    Google Scholar 

  • Frazzetta TH (1994) Feeding mechanisms in sharks and other elasmobranchs. In: Bels VL, Chardon M, Vanderwalle P (eds) Biomechanics of feeding in vertebrates: advances in comparative and environmental physiology. Springer, New York, pp 31–57

    Google Scholar 

  • Frazzetta TH, Prange CD (1987) Movements of cephalic components during feeding in some requiem sharks (Carcharhiniformes: Carcharhinidae). Copeia 1987:979–993

    Google Scholar 

  • Fuss T, Bleckmann H, Schluessel V (2014) Visual discrimination abilities in the gray bamboo shark (Chiloscyllium griseum). Zoology 117:104–111

    PubMed  Google Scholar 

  • Gardiner JM, Atema J (2007) Sharks need the lateral line to locate odor sources: rheotaxis and eddy chemotaxis. J Exp Biol 210:1925–1934

    PubMed  Google Scholar 

  • Gardiner JM, Atema J (2010) The function of bilateral timing differences in olfactory orientation of sharks. Curr Biol 20:1187–1191

    CAS  PubMed  Google Scholar 

  • Gardiner JM, Atema J (2014) Flow sensing in sharks: lateral line contributions to navigation and prey capture. In: Bleckmann H, Mogdans J, Coombs SL (eds) Flow sensing in air and water: behavioural, neural, and engineering principles of operation. Springer, pp 127–146

    Google Scholar 

  • Gardiner JM, Atema J, Hueter RE et al (2014) Multisensory integration and behavioral plasticity in sharks from different ecological niches. PLoS ONE 9:e93036

    PubMed  PubMed Central  Google Scholar 

  • Gardiner JM, Atema J, Hueter RE et al (2016) Modulation of shark prey capture kinematics in response to sensory deprivation. Zoology In Press

    Google Scholar 

  • Geniz JLC, Nishizaki OS, Jimenéz JCP (2007) Morphological variation and sexual dimporphism in the California skate, Raja inornata Jordan and Gilbert, 1881 from the Gulf of California, Mexico. Zootaxa 1545:1–16

    Google Scholar 

  • German DP (2011) Digestive efficiency. In: Farrell AP, Cech JJ, Richards JG et al (eds) Encyclopedia of fish physiology, from genome to environment. Elsevier, San Diego, CA, pp 1596–1607

    Google Scholar 

  • Gerry SP, Ramsay JB, Dean MN et al (2008) Evolution of asynchronous motor activity in paired muscles: effects of ecology, morphology, and phylogeny. Integ Comp Biol 48:272–282

    Google Scholar 

  • Gerry SP, Summers AP, Wilga CD et al (2010) Pairwise modulation of jaw muscle activity in two species of elasmobranchs. J Zool 281(4):282–292

    Google Scholar 

  • Gilbert PW (1963) The visual apparatus of sharks. In: Gilbert PW (ed) Sharks and survival. DC Heath and Co, Boston, MA, pp 283–326

    Google Scholar 

  • Gilbert PW, Hodgson ES, Mathewson RF (1964) Electroencephalograms of sharks. Science 145:949–951

    CAS  PubMed  Google Scholar 

  • Gillis JA, Donoghue CJ (2007) The homology and phylogeny of chondrichthyan tooth enameloid. J Morphol 268:33–49

    PubMed  Google Scholar 

  • Ginter M, Maisey JG (2007) The braincase and jaws of Cladodus from the lower Carboniferous of Scotland. Paleontology. 50(2):305–322

    Google Scholar 

  • Graeber RC (1978) Behavioral studies correlated with central nervous system integration of vision in sharks. In: Hodgson ES, Mathewson RF (eds) Sensory Biology of Sharks, Skates, and Rays. US Government Printing Office, Washington, pp 195–225

    Google Scholar 

  • Gregory WK (1904) The relations of the visceral arches to the chondrocranium. Biol Bull 7:55–69

    Google Scholar 

  • Grogan ED, Lund R (2000) Debeerius ellefseni (Fam. Nov, General Nov, Spec. Nov), an autodiastylic chondrichthyan from the Mississippian bear gulch limestone of Montana (USA), the relationships of the Chondrichthyes, and comments on gnathostome evolution. J Morphol 243:219–245

    CAS  PubMed  Google Scholar 

  • Guerard F, Le Gal Y (1987) Characterization of a chymosin-like pepsin from the dogfish Scyliorhinus canicula. Comp Biochem Physiol B 88:823–827

    CAS  PubMed  Google Scholar 

  • Gutteridge AN, Bennett MB (2014) Functional implications of ontogenetically and sexual dimoprhic dentition in the eastern shovelnose ray, Aptychotrema rostrata. J Exp Biol 217:192–200

    PubMed  Google Scholar 

  • Gutowska MA, Drazen JC, Robinson BH (2004) Digestive chitinolytic activity in marine fishes of Monterey Bay, California. Comp Biochem Physiol A 139:351–358

    Google Scholar 

  • Habegger ML, Motta PJ, Huber DR et al (2011) Feeding biomechanics in the great barracuda (Sphyraena barracuda) during ontogeny. J Zool 283(1):63–72

    Google Scholar 

  • Habegger ML, Motta PJ, Huber DR et al (2012) Feeding biomechanics and theoretical calculations of bite force in bull sharks (Carcharhinus leucas) during ontogeny. Zoology. 115(6):354–364

    PubMed  Google Scholar 

  • Haddock SHD, Moline MA, Case JF (2010) Bioluminescence in the sea. Ann Rev Mar Sci 2:443–493

    PubMed  Google Scholar 

  • Haine OS, Ridd PV, Rowe RJ (2001) Range of electrosensory detection of prey by Carcharhinus melanopterus and Himantura granulata. Mar Freshw Res 52:291–296

    Google Scholar 

  • Hanke W, Bleckmann H (2004) The hydrodynamic trails of Lepomis gibbosus (Centrarchidae), Colomesus psittacus (Tetraodontidae) and Thysochromis ansorgii (Cichlidae) investigated with scanning particle image velocimetry. J Exp Biol 207:1585–1596

    PubMed  Google Scholar 

  • Hanke W, Brücker C, Bleckmann H (2000) The ageing of the low frequency water disturbances caused by swimming goldfish and its possible relevance to prey detection. J Exp Biol 203:1193–2000

    CAS  PubMed  Google Scholar 

  • Harris LJ, Bedore CN, Kajiura SM (2015) Electroreception in the obligate freshwater stingray, Potamotrygon motoro. Mar Freshw Res 66:1027–1036

    Google Scholar 

  • Hart HR, Evans AN, Gelsleichter J et al (2016) Molecular identification and functional characteristics of peptide transporters in the bonnethead shark (Sphyrna tiburo). J Comp Physiol B 186(7):855–866

    CAS  PubMed  Google Scholar 

  • Heithaus MR (2004) Fish communities of seagrass meadows and associated habitats in Shark Bay, Western Australia. Bull Mar Sci 75:79–99

    Google Scholar 

  • Herrel A, Podos J, Huber SK et al (2005) Evolution of bite force in Darwin’s finches: a key role for head width. J Evol Biol 18:669–675

    CAS  PubMed  Google Scholar 

  • Hobson ES (1963) Feeding behavior in three species of sharks. Pac Sci 17:171–194

    Google Scholar 

  • Hodgson ES, Mathewson RF (1971) Chemosensory orientation in sharks. Ann NY Acad Sci 188:175–182

    CAS  PubMed  Google Scholar 

  • Hodgson ES, Mathewson RF (1978) Electrophysiological studies of chemoreception in elasmobranchs. In: Hodgson ES, Mathewson RF (eds) Sensory biology of Sharks, Skates, and Rays. US Government Printing Office, Washington, pp 195–225

    Google Scholar 

  • Hogben CAM (1967) Response of the isolated dogfish gastric mucosa to histamine. Proc Soc Exp Biol Med 124:890–893

    CAS  PubMed  Google Scholar 

  • Holmgren S, Holmberg A (2005) Control of gut motility and secretion in fasting and fed nonmammalian vertebrates. In: Starck JM, Wang T (eds) Physiological and ecological adaptations to feeding in vertebrates. Science Publishers, New Jersey

    Google Scholar 

  • Holmgren S, Nilsson S (1999) Digestive system. In: Hamlett WC (ed) Sharks, Skates and Rays. The biology of elasmobranch fishes. John Hopkins University Press, Baltimore, pp 144–173

    Google Scholar 

  • Holmgren S, Olsson C (2009) The neuronal and endocrine regulation of gut function. Fish Physiol 28:467–512

    Google Scholar 

  • Huber DR, Motta PJ (2004) Comparative analysis of methods for determining bite force in the spiny dogfish Squalus acanthias. J Exp Zool A 301(1):26–37

    Google Scholar 

  • Huber DR, Eason TG, Hueter RE et al (2005) Analysis of the bite force and mechanical design of the feeding mechanism of the durophagous horn shark Heterodontus francisci. J Exp Biol 208:3553–3571

    Google Scholar 

  • Huber DR, Weggelaar CL, Motta PJ (2006) Scaling of bite force in the blacktip shark Carcharhinus limbatus. Zoology. 109:109–119

    PubMed  Google Scholar 

  • Huber DR (2006) Cranial biomechanics and feeding performance in sharks. Dissertation, University of South Florida

    Google Scholar 

  • Huber DR, Dean MN, Summers AP (2008) Hard prey, soft jaws, and the ontogeny of feeding biomechanics in the spotted ratfish Hydrolagus colliei. J R Soc Inter 5:941–952

    Google Scholar 

  • Huber DR, Claes JM, Mallefet J et al (2009) Is extreme biting performance associated with extreme morphologies in sharks? Physiol Biochem Zool 82(1):20–28

    Google Scholar 

  • Huber DR, Neveu DE, Stinson CM et al (2013) Mechanical properties of sand tiger shark Carcharias taurus vertebrae in relation to spinal deformity. J Exp Biol 216:4256–4263

    PubMed  Google Scholar 

  • Hume ID (1989) Optimal digestive strategies in mammalian herbivores. Physiol Zool 62:1145–1163

    Google Scholar 

  • Hume ID (2005) Concepts of digestive efficiency. In: Starck JM, Wang T (eds) Physiological and ecological adaptations to feeding in vertebrates. Science Publishers, New Jersey

    Google Scholar 

  • Huxley TH (1876) On Ceratodus fosteri, observation on the classification of fishes. Proc Zool Soc Lond 1876:24–59

    Google Scholar 

  • Jagnandan K, Huber D (2010) Structural and material properties of the jaws of the lemon shark Negaprion brevirostris and horn shark Heterodontus francisci. Florida Sci 73:38

    Google Scholar 

  • Jeschke JM (2007) When carnivores are ‘full and lazy’. Oecologia 152:357–364

    PubMed  Google Scholar 

  • Jhaveri P, Papastamatiou YP, German DP (2015) Digestive enzyme activities in the guts of bonnethead sharks (Sphyrna tiburo) provide insight into their digestive strategy and evidence for microbial digestion in their hindguts. Comp Biochem Physiol A 189:76–83

    CAS  Google Scholar 

  • Johnson SE (1917) Structure and development of the sense organs of the lateral canal system of selachians (Mustelus canis and Squalus acanthius). J Comp Neurol 28:1–74

    Google Scholar 

  • Johnsen PB, Teeter JH (1985) Behavioral responses of bonnethead sharks (Sphyrna tiburo) to controlled olfactory stimulation. Mar Behav Physiol 11:283–291

    Google Scholar 

  • Johnsen S (2005) Visual ecology on the high seas. Mar Ecol Prog Ser 287:281–285

    Google Scholar 

  • Johnsen S, Sosik HM (2004) Shedding light on light in the sea. Oceanus 43:24–28

    Google Scholar 

  • Johnson AG, Horton HF (1972) Length-weight relationship, food habits, parasites, and sex and age determination of the ratfish, Hydrolagus colliei. Fish Bull 70:421–429

    Google Scholar 

  • Jordan LK, Kajiura SM, Gordon MS (2009a) Functional consequences of structural differences in stingray sensory systems. Part I: mechanosensory lateral line canals. J Exp Biol 212:3037–3043

    PubMed  Google Scholar 

  • Jordan LK, Kajiura SM, Gordon MS (2009b) Functional consequences of structural differences in stingray sensory systems. Part II: electrosensory system. J Exp Biol 212:3044–3050

    PubMed  Google Scholar 

  • Jordan LK, Mandelman JW, Kajiura SM (2011) Behavioral responses to weak electric fields and a lanthanide metal in two shark species. J Exp Mar Biol Ecol 409:345–350

    CAS  Google Scholar 

  • Kajiura SM, Tricas TC (1996) Seasonal dynamics of dental sexual dimorphism in the Atlantic Stingray, Dasyatis sabina. J Exp Biol 199:2297–2306

    CAS  PubMed  Google Scholar 

  • Kajiura SM (2003) Electroreception in neonatal bonnethead sharks, Sphyrna tiburo. Mar Biol 143:603–611

    Google Scholar 

  • Kajiura SM, Fitzgerald TP (2009) Response of juvenile scalloped hammerhead sharks to electric stimuli. Zoology 112:241–250

    PubMed  Google Scholar 

  • Kajiura SM, Holland KN (2002) Electroreception in juvenile scalloped hammerhead and sandbar sharks. J Exp Biol 205:3609–3621

    PubMed  Google Scholar 

  • Kalmijn AJ (1971) The electric sense of sharks and rays. J Exp Biol 55:371–383

    CAS  PubMed  Google Scholar 

  • Kalmijn AJ (1972) Bioelectric fields in seawater and the function of the ampullae of Lorenzini in elasmobranch fishes. Scripps Inst Oceanogr Ref Ser Oct:1–21

    Google Scholar 

  • Kalmijn AJ (1982) Electric and magnetic field detection in elasmobranch fishes. Science 218:916–918

    CAS  PubMed  Google Scholar 

  • Kasumyan AO (2008) Sounds and sound production in fishes. J Ichthyol 48:981–1030

    Google Scholar 

  • Kawakoshi A, Kaiya H, Riley LG et al (2007) Identification of a ghrelin-like peptide in two species of shark, Sphryna lewini and Carcharhinus melanopterus. Gen Comp Endocrinol 151:259–268

    CAS  PubMed  Google Scholar 

  • Kemp NS, Westrin SK (1979) Ultrastructure of calcified cartilage in the endoskeletal tesserae of sharks. J Morphol 160:75–102

    CAS  PubMed  Google Scholar 

  • Kempster RM, McCarthy ID, Collin SP (2012) Phylogenetic and ecological factors influencing the number and distribution of electroreceptors in elasmobranchs. J Fish Biol 80:2055–2088

    CAS  PubMed  Google Scholar 

  • Kempster RM, Egeberg CA, Hart NS et al (2016) Electrosensory-driven feeding behaviours of the Port Jackson shark (Heterodontus portusjacksoni) and western shovelnose ray (Aptychotrema vincentiana). Mar Freshw Res 67:187–194

    Google Scholar 

  • Kirwet J, Witzmann F, Kulg S et al (2008) First direct evidence of a vertebrate three-level trophic chain in the fossil record. Proc R Soc B 275:181–186

    Google Scholar 

  • Koehl MAR (1996) When does morphology matter? Ann Rev Ecol Syst 27:501–542

    Google Scholar 

  • Kolmann MA, Huber DR (2009) Scaling of feeding biomechanics in the horn shark Heterodontus francisci: ontogenetic constraints on durophagy. Zoology. 112:351–361

    PubMed  Google Scholar 

  • Kolmann MA, Huber DR, Dean MN et al (2014) Myological variability in a decoupled skeletal system: batoid cranial anatomy. J Morphol 275(8):862–881

    PubMed  Google Scholar 

  • Kolmann MA, Huber DR, Motta PJ et al (2015a) Feeding biomechanics of the Cownose ray, Rhinoptera bonasus, over ontogeny. J Anat 227(3):341–351

    PubMed  PubMed Central  Google Scholar 

  • Kolmann MA, Crofts SB, Dean MN et al (2015b) Morphology does not predict performance: jaw curvature and prey crushing in durophagous Stingrays. J Exp Biol 218:3941–3949

    PubMed  Google Scholar 

  • Kolmann MA, Welch KC, Summers AP et al (2016) Always chew your food: freshwater stingrays use mastication to process tough insect prey. Proc Roy Soc B 283(1838). https://doi.org/10.1098/rspb.2016.1392

    PubMed  Google Scholar 

  • Laasanen MS, Saarakkala S, Toyras J (2003) Ultrasound indentation of bovine knee articular cartilage in situ. J Biomech 36:1259–1267

    PubMed  Google Scholar 

  • Lane JA, Maisey JG (2012) The visceral skeleton and jaw suspension in the durophagous hybodontid shark Tribodus limae from the Lower Cretaceous of Brazil. J Paleontol 86(5):886–905

    Google Scholar 

  • Lauder GV (1995) On the inference of function from structure. In: Thomason JJ (ed) Functional Morphology in Vertebrate Paleontology. Cambridge University Press, Cambridge, pp 1–18

    Google Scholar 

  • Liem KF (1980) Adaptive significance of intra-and interspecific differences in the feeding repertoires of Cichlid fishes. Am Zool 20:295–314

    Google Scholar 

  • Liem KF, Bemis WE, Walker WF Jr et al (2001) Functional anatomy of the vertebrates: an evolutionary perspective. Harcourt College Publishers, New York

    Google Scholar 

  • Lisney TJ, Theiss SM, Collin SP et al (2012) Vision in elasmobranchs and their relatives: 21st century advances. J Fish Biol 80:2024–2054

    CAS  PubMed  Google Scholar 

  • Liu X, Dean MN, Summers AP et al (2010) Composite model of the shark’s skeleton in bending: a novel architecture for biomimetic design of functional compression bias. Mat Sci Eng C 30:1077–1084

    CAS  Google Scholar 

  • Liu X, Dean MN, Youssefpour H et al (2014) Stress relaxation behavior of tessellated cartilage from the jaws of blue sharks. J Mech Beh Biomed Mat 29:68–80. https://doi.org/10.1016/j.jmbbm.2013.08.014

    CAS  CrossRef  Google Scholar 

  • Lowe CG, Wetherbee BM, Crow GL et al (1996) Ontogenetic dietary shifts and feeding behavior of the tiger shark, Galeocerdo cuvier, in Hawaiian waters. Env Biol Fish 47:203–211

    Google Scholar 

  • Luer CA, Blum PC, Gilbert PW (1990) Rate of tooth replacement in the nurse shark, Ginglymostoma cirratum. Copeia 1990:182–191

    Google Scholar 

  • Luger A, Schotte M, Baum D et al (2015) On the jaws of lamniforms sharks. Paper presented at the tomography for scientific advancement symposium, Manchester, UK, 3–4 Sep 2015

    Google Scholar 

  • Lund R, Grogan ED (1997) Relationships of the Chimaeriformes and the basal radiation of the Chondrichthyes. Rev Fish Biol Fish 7:65–123

    Google Scholar 

  • Maisey JG (1980) An evaluation of jaw suspension in sharks. Am Mus Novit 2706:1–17

    Google Scholar 

  • Maisey JG (2013) The diversity of tessellated calcification in modern and extinct chondrichthyans. Rev de Paleobiol Geneve 32(2):355–371

    Google Scholar 

  • Mara KR, Motta PJ, Huber DR (2010) Bite force and performance in the durophagous bonnethead shark Sphyrna tiburo. J Exp Zool A 313(2):95–105

    Google Scholar 

  • Martin RA, Hammerschlag N, Collier RS et al (2005) Predatory behaviour of white sharks (Carcharodon carcharias) at Seal Island, South Africa. J Mar Biol Assoc UK 85:1121–1135

    Google Scholar 

  • Maruska KP (2001) Morphology of the mechanosensory lateral line system in elasmobranch fishes: ecological and behavioral considerations. Env Biol Fish 60:47–75

    Google Scholar 

  • Maruska KP, Tricas TC (1998) Morphology of the mechanosensory lateral line system in the Atlantic stingray, Dasyatis sabina: the mechanotactile hypothesis. J Morphol 238:1–22

    PubMed  Google Scholar 

  • Maruska KP, Tricas TC (2004) Test of the mechanotactile hypothesis: neuromast morphology and response dynamics of mechanosensory lateral line primary afferents in the stingray. J Exp Biol 207:3463–3476

    PubMed  Google Scholar 

  • Mathewson RF, Hodgson ES (1972) Klinotaxis and rheotaxis in orientation of sharks toward chemical stimuli. Comp Biochem Physiol A 42:79–84

    CAS  PubMed  Google Scholar 

  • Matott MP, Motta PJ, Hueter RE (2005) Modulation in feeding kinematics and motor pattern of the nurse shark Ginglymostoma cirratum. Env Biol Fish 74:163–174

    Google Scholar 

  • Mazur MM, Beauchamp DA (2003) A comparison of visual prey detection among species of piscivorous salmonids: effects of light and low turbidities. Env Biol Fish 67:397–405

    Google Scholar 

  • McComb DM, Tricas TC, Kajiura SM (2009) Enhanced visual fields in hammerhead sharks. J Exp Biol 212:4010–4018

    CAS  PubMed  Google Scholar 

  • McCosker JE (1987) The white shark, Carcharodon carcharias has a warm stomach. Copeia 1987:195–197

    Google Scholar 

  • Medved RJ (1985) Gastric evacuation in the sandbar shark, Carcharhinus plumbeus. J Fish Biol 26:239–253

    Google Scholar 

  • McCourt RM, Kerstitch AN (1980) Mating behavior and sexual dimorphism in dentition in the stingray Urolophus concentricus from the Gulf of California. Copeia 1980:900–901

    Google Scholar 

  • McEachern JD (1977) Reply to ‘Sexual dimorphism in skates (Rajidae)’. Evolution 31:218–220

    Google Scholar 

  • McGowan DW, Kajiura SM (2009) Electroreception in the euryhaline stingray, Dasyatis sabina. J Exp Biol 212:1544–1552

    CAS  PubMed  Google Scholar 

  • Meredith TM, Kajiura SM (2010) Olfactory morphology and physiology of elasmobranchs. J Exp Biol 213:3449–3456

    PubMed  Google Scholar 

  • Mertinene RA (1982) The histology of the teeth of elasmobranchs. Paleontol J 16:74–82

    Google Scholar 

  • Meyer CG, Holland KN (2012) Autonomous measurement of ingestion and digestion processes in free-swimming sharks. J Exp Biol 215:3681–3684

    PubMed  Google Scholar 

  • Michelangeli F, Ruiz MC, Dominguez MG et al (1988) Mammalian like differentiation of gastric cells in the shark Hexanchus griseus. Cell Tissue Res 251:225–227

    CAS  PubMed  Google Scholar 

  • Miyake T (1988) The systematics of the stingray genus Urotrygon with comments on the interrelationships within Urolophidae (Chondricthyes, Myliobatiformes). Dissertation, Texas AandM University

    Google Scholar 

  • Miyake T, McEachran JD, Hall BK (1992) Edgeworth’s legacy of cranial muscle development with an analysis of muscles in the ventral gill arch region of batoid fishes (Chondrichthyes: Batoidea). J Morphol 212:213–256

    CAS  PubMed  Google Scholar 

  • Montgomery JC (1989) Lateral line detection of planktonic prey. In: Coombs S, Gorner P, Munz H (eds) The Mechanosensory lateral line: neurobiology and evolution. Springer, New York, pp 561–574

    Google Scholar 

  • Montgomery JC, Skipworth E (1997) Detection of weak water jets by the short-tailed stingray Dasyatis brevicaudata (Pisces: Dasyatidae). Copeia 1997:881–883

    Google Scholar 

  • Moore PA, Atema J (1991) Spatial information in the three-dimensional fine structure of an aquatic odor plume. Biol Bull 181:408–418

    CAS  PubMed  Google Scholar 

  • Moore PA, Scholz N, Atema J (1991) Chemical orientation of lobsters, Homarus americanus, in turbulent odor plumes. J Chem Ecol 17:1293–1307

    CAS  PubMed  Google Scholar 

  • Moss ML (1967) Tooth replacement in the lemon shark, Negaprion brevirostris. In: Gilbert PW, Mathewson RF, Rall DP (eds) Sharks, Skates, and Rays. John Hopkins University Press, Baltimore, pp 319–329

    Google Scholar 

  • Moss SA (1977) Feeding mechanisms in sharks. Amer Zool 17:355–364

    Google Scholar 

  • Motta PJ (2004) Prey capture behavior and feeding mechanics of elasmobranchs. In: Carrier JC, Musick JA, Heithaus MR (eds) Biology of Sharks and their relatives. CRC Press, Boca Raton, pp 165–202

    Google Scholar 

  • Motta PJ, Hueter RE, Tricas TC et al (1997) Feeding mechanism and functional morphology of the jaws of the lemon shark, Negaprion brevirostris (Chondrichthyes, Carcharhinidae). J Exp Biol 200:2765–2780

    CAS  PubMed  Google Scholar 

  • Motta PJ, Wilga CD (1999) Anatomy of the feeding apparatus of the nurse shark, Ginglymostoma cirratum. J Morphol 241:33–60

    CAS  PubMed  Google Scholar 

  • Motta PJ, Wilga CD (2001) Advances in the study of feeding behaviors, mechanisms, and mechanics of sharks. Env Biol Fish 20:131–156

    Google Scholar 

  • Motta PJ, Hueter RE, Tricas TC et al (2002) Kinematic analysis of suction feeding in the nurse shark, Ginglymostoma cirratum (Orectolobiformes, Ginglymostomatidae). Copeia 2002:24–38

    Google Scholar 

  • Motta PJ, Huber DR (2012) Prey capture behavior and feeding mechanics of elasmobranchs. In: Carrier JC, Musick JA, Heithaus MR (eds) Biology of Sharks and their relatives, 2nd edn. CRC Press, New York, pp 153–209

    Google Scholar 

  • Motta PJ, Hueter RE, Tricas TC et al (2008) Functional morphology of the feeding apparatus, feeding constraint and suction performance in the nurse shark Ginglymostoma cirratum. J Morphol 269:1041–1055

    PubMed  Google Scholar 

  • Motta PJ, Maslanka M, Hueter RE et al (2010) Feeding anatomy, filter–feeding rate, and diet of whale sharks Rhincodon typus during surface ram filter feeding off the Yucatan Peninsula, Mexico. Zoology 113:199–212

    Google Scholar 

  • Moy-Thomas JA, Miles RS (1971) Paleozoic fishes. Chapman and Hall Ltd, London

    Google Scholar 

  • Moyer JK, Riccio ML, Bemis WE (2015) Development and microstructure of tooth histotypes in the blue shark, Prionace glauca (Carcharhiniformes: Carcharhinidae) and the great white shark, Carcharodon carcharias (Lamniformes: Lamnidae). J Morphol 276:797–817

    PubMed  Google Scholar 

  • Mulvany S, Motta PJ (2013) The morphology of the cephalic lobes and anterior pectoral fins in six species of batoids. J Morphol 274(9):1070–1083

    PubMed  Google Scholar 

  • Mulvany S, Motta PJ (2014) Prey capture kinematics in batoids using different prey types: Investigating the role of the cephalic lobes. J Exp Zool A 321(9):515–530

    Google Scholar 

  • Munroe SEM, Simpfendorfer CA, Heupel MR (2014) Defining shark ecological specialisation: concepts, context, and examples. Rev Fish Biol Fish 24(1):317–331

    Google Scholar 

  • Myrberg J, Banner A, Richard JD (1969) Shark attraction using a video-acoustic system. Mar Biol 2:264–276

    Google Scholar 

  • Myrberg J, Ha SJ, Walewski S et al (1972) Effectiveness of acoustic signals in attracting epipelagic sharks to an underwater sound source. Bull Mar Sci 22:926–949

    Google Scholar 

  • Nakaya K, Matsumoto R, Suda K (2008) Feeding strategy of the megamouth shark Megachasma pelagios (Lamniformes: Megachasmidae). J Fish Biol 73:17–34

    Google Scholar 

  • Nauwelaerts S, Wilga C, Sanford C et al (2007) Hydrodynamics of prey capture in sharks: effects of substrate. J R Soc Interface 4:341–345

    PubMed  Google Scholar 

  • Nelson DR (1967) Hearing thresholds, frequency discrimination, and acoustic orientation in the lemon shark, Negaprion brevirostris (Poey). Bull Mar Sci 17:741–767

    Google Scholar 

  • Nelson DR, Gruber SH (1963) Sharks: attraction by low-frequency sounds. Science 142:975–977

    CAS  PubMed  Google Scholar 

  • Nelson DR, Johnson RH, Waldrop LG (1969) Responses of Bahamanian sharks and groupers to low-frequency, pulsed sounds. Bull So Cal Acad Sci 68:131–137

    Google Scholar 

  • Nelson GA, Ross MR (1995) Gastric evacuation in little skate. J Fish Biol 46:977–986

    Google Scholar 

  • Nelson JD, Eckert SA (2007) Foraging ecology of whale sharks (Rhincodon typus) within Bahia de Los Angeles, Baja California Norte, Mexico. Fish Res 84:47–64

    Google Scholar 

  • Newton KC, Wraith J, Dickson KA (2015) Digestive enzyme activities are higher in the shortfin mako shark, Isurus oxyrinchus than in ectothermic sharks as a result of visceral endothermy. Fish Physiol Biochem 41:887–898

    CAS  PubMed  Google Scholar 

  • Niesterok B, Hanke W (2013) Hydrodynamic patterns from the fast-starts in teleost fish and their possible relevance to predator-prey interactions. J Comp Physiol A 199:139–149

    Google Scholar 

  • Nikonov AA, Illyin YN, Zherelove OM et al (1990) Odour thresholds of the black sea skate (Raja clavata). Electrophysiological study. Comp Biochem Physiol A 95:325–328

    Google Scholar 

  • Norton SF, Brainerd EL (1993) Convergence in the feeding mechanics of ecomorphologically similar species in the Centrarchidae and Cichlidae. J Exp Biol 176:11–29

    Google Scholar 

  • Notarbartolo–Di–Sciara G, Hillyer EV (1989) Mobulid rays off Eastern Venezuela. Copeia 1989:607–614

    Google Scholar 

  • Omelon S, Georgiou J, Variola F et al (2014) Colocation and role of polyphosphates and alkaline phosphatase in apatite biomineralization of elasmobranch tesserae. Acta Biomater 10:3899–3910

    CAS  PubMed  Google Scholar 

  • Orvig T (1951) Histologic studies of placoderm and fossil elasmobranchs. I. The endoskeleton, with remarks on the hard tissues of lower vertebrates in general. Arkiv Zool 2:321–454

    Google Scholar 

  • Owen SF (2001) Meeting energy budgets by modulation of behavior and physiology in the eel (Anguillar anguillar). Comp Biochem Physiol A 128:631–644

    CAS  Google Scholar 

  • Paig-Tran EW, Summers AP (2014) Comparison of the structure and composition of the branchial filters in suspension feeding elasmobranchs. Anat Rec 297:701–715

    Google Scholar 

  • Paig-Tran EWM, Bizzarro JJ, Strother JA et al (2011) Bottles as models: predicting the effects of varying swimming speed and morphology on size selectivity and filtering efficiency in fishes. J Exp Biol 214:1643–1654

    Google Scholar 

  • Paig-Tran EWM, Kleinteich T, Summers AP (2013) The filter pads and filtration mechanisms of the devil rays: Variation at macro and microscopic scales. J Morphol 274(9):1026–1043

    Google Scholar 

  • Palmer LM, Deffenbaugh M, Mensinger AF (2005) Sensitivity of the anterior lateral line to natural stimuli in the oyster toadfish, Opsanus tau (Linnaeus). J Exp Biol 208:3441–3450

    PubMed  Google Scholar 

  • Papastamatiou YP (2007) The potential influence of gastric acid secretion during fasting on digestion time in leopard sharks (Triakis semifasciata). Comp Biochem Physiol A 147:37–42

    Google Scholar 

  • Papastamatiou YP, Lowe CG (2004) Postprandial response of gastric pH in leopard sharks (Triakis semifasciata) and its use to study foraging ecology. J Exp Biol 207:225–232

    PubMed  Google Scholar 

  • Papastamatiou YP, Lowe CG (2005) Variations in gastric acid secretion during periods of fasting between two species of shark. Comp Biochem Physiol A 141:210–214

    Google Scholar 

  • Papastamatiou YP, Wetherbee BM, Lowe CG et al (2006) Distribution and diet of four species of carcharhinid shark in the Hawaiian Islands: evidence for resource partitioning and competitive exclusion. Mar Ecol Prog Ser 320:239–251

    Google Scholar 

  • Papastamatiou YP, Purkis SJ, Holland KN (2007) The response of gastric pH and motility to fasting and feeding in free-swimming blacktip reef sharks (Carcharhinus melanopterus). J Exp Mar Biol Ecol 345:129–140

    CAS  Google Scholar 

  • Papastamatiou YP, Wetherbee BM, O’Sullivan J et al (2010) Foraging ecology of cookiecutter sharks (Isistius brasiliensis) on pelagic fishes in Hawaii, inferred from prey bite wounds. Env Biol Fish 88(4):361–368

    Google Scholar 

  • Papastamatiou YP, Watanabe YY, Bradley D et al (2015) Drivers of daily routines in an ectothermic marine predator: hunt warm, rest warmer? PLoS ONE 10:e0127807

    PubMed  PubMed Central  Google Scholar 

  • Peach MB (2001) The dorso-lateral pit organs of the Port Jackson shark contribute sensory information for rheotaxis. J Fish Biol 59:696–704

    Google Scholar 

  • Peach MB (2003) The behavioral role of pit organs in the epaulette shark. J Fish Biol 62:793–802

    Google Scholar 

  • Penry DL, Jumars PA (1987) Modelling animal guts as chemical reactors. Am Naturalist 129:69–96

    CAS  Google Scholar 

  • Peyer B (1968) Comparative odontology. University of Chicago Press, Chicago

    Google Scholar 

  • Pohlmann K, Atema J, Breithaupt T (2004) The importance of the lateral line in nocturnal predation of piscivorous catfish. J Exp Biol 207:2971–2978

    PubMed  Google Scholar 

  • Pohlmann K, Grasso FW, Breithaupt T (2001) Tracking wakes: the nocturnal predatory strategy of piscivorous catfish. Proc Natl Acad Sci USA 98:7371–7374

    CAS  PubMed  Google Scholar 

  • Porter ME, Beltran JL, Koob TJ et al (2006) Material properties and biochemical composition of mineralized vertebral cartilage in seven elasmobranch species (Chondrichthyes). J Exp Biol 209:2920–2928

    CAS  PubMed  Google Scholar 

  • Porter ME, Koob TJ, Summers AP (2007) The contribution of mineral to the material properties of vertebral cartilage from the smooth-hound shark Mustelus californicus. J Exp Biol 210:3319–3327

    PubMed  Google Scholar 

  • Powlik JJ (1995) On the geometry and mechanics of tooth position in the white shark Carcharodon carcharias. J Morphol 226:277–288

    PubMed  Google Scholar 

  • Powter DM, Gladstone W, Platell M (2010) The influence of sex and maturity on the diet, mouth morphology and dentition of the Port Jackson shark, Heterodontus portusjacksoni. Mar Freshw Res 61:74–85

    Google Scholar 

  • Pratt HKL, Carrier JC (2001) A review of elasmobranch reproductive behavior with a case study on the nurse shark Ginglymostoma cirratum. Env Biol Fish 60:157–158

    Google Scholar 

  • Preuschoft H, Reif WE, Muller WH (1974) Funktionsanpassungen in form und struktur an haifischzahnen. Z Anat Entwickl-Gesch 143:315–344

    CAS  Google Scholar 

  • Quinn TP, Miller BS, Wingert RC (1980) Depth distribution and seasonal and diel movements of ratfish, Hydrolagus colliei, in Puget Sound, Washington. Fish Bull 78:816–821

    Google Scholar 

  • Ramsay JB, Wilga CD (2007) Morphology and mechanics of the teeth and jaws of white-spotted bamboo sharks (Chiloscyllium plagiosum). J Morphol 268:664–682

    PubMed  Google Scholar 

  • Ramsay JB, Wilga CD, Tapanila L et al (2015) Eating with a saw for a jaw: Functional morphology of the jaws and tooth-whorl in Helicoprion davisii. J Morphol 276(1):47–64

    PubMed  Google Scholar 

  • Raschi W (1978) Notes on the gross functional morphology of the ampullary system in two similar species of skates, Raja erinacea and R. ocellata. Copeia 1978:48–53

    Google Scholar 

  • Rebolledo IM, Vial JD (1979) Fine structure of the oxynticopeptic cell in the gastric glands of an elasmobranch species (Halaelurus chilensis). Anat Rec 193:805–822

    CAS  PubMed  Google Scholar 

  • Reidenberg JS, Laitman JT (2010) Generation of sound in marine mammals. In: Brudzynski SM (ed) Handbook of Mammalian Vocalization: an integrative neuroscience approach. Academic Press, Amsterdam, pp 451–465

    Google Scholar 

  • Reif WE (1983) Functional morphology and evolutionary ecology. Paläontologie Zeitschrift 57:255–266

    Google Scholar 

  • Reif WE, McGill D, Motta PJ (1978) Tooth replacement rates of the sharks Triakis semifasciata and Ginglymostoma cirratum. Zool Jahrb Anat Ontog 99:151–156

    Google Scholar 

  • Ribéreau-Gayon A, Rando C, Schuliar Y et al (2016) Extensive unusual lesions on a large number of immersed human victims found to be from cookiecutter sharks (Isistius spp.): an examination of the Yemenia plane crash. Int J Legal Med. https://doi.org/10.1007/s00414-016-1449-6

    PubMed  PubMed Central  Google Scholar 

  • Richard JD (1968) Fish attracted with low-frequency pulsed sound. J Fisheries Res Board Can 25:1441–1452

    Google Scholar 

  • Roberts BL (1978) Mechanoreceptors and the behavior of elasmobranch fishes with special reference to the acoustico-lateralis system. In: Hodgson ES, Mathewson RF (eds) Sensory biology of Sharks, Skates and Rays. Office of Naval Research, Department of the Navy, Arlington, pp 331–390

    Google Scholar 

  • Rosenberg LR (1998) A comparison of the mineralized endoskeletal tissues of several recent and fossil chondrichthyans from the Bear Gulch limestone of Montana. MS thesis. Adelphi University

    Google Scholar 

  • Rosenthal GG (2007) Spatiotemporal dimensions of visual signals in animal communication. Ann Rev Ecol Evol Syst 28:155–178

    Google Scholar 

  • Rubenstein DI, Koehl MAR (1977) The mechanisms of filter feeding: some theoretical considerations. Am Naturalist 111:981–994

    Google Scholar 

  • Schaeffer B (1967) Comments on elasmobranch evolution. In: Gilbert PW, Mathewson RF, Rall DB (eds) Sharks, Skates, and Rays. John Hopkins Press, Baltimore, pp 3–35

    Google Scholar 

  • Schluessel V, Bennett MB, Collin SP (2010) Diet and reproduction in the white-spotted eagle ray Aetobatus narinari from Queensland, Australia and the Penghu Islands, Taiwan. Mar Freshw Res 61:1278–1289

    Google Scholar 

  • Schmitz B (2002) Sound production in crustacea with special reference to Alpheidae. In: Wiese DK (ed) The Crustacean Nervous System. Springer-Verlag, Berlin, pp 536–547

    Google Scholar 

  • Schnetz L, Pfaff C, Kriwet J (2016) Tooth development and histology patterns in lamniform sharks (Elasmobranchii, Lamniformes) revisited. J Morphol 277:1584–1598

    PubMed  Google Scholar 

  • Schofield RMS, Choi S, Coon JJ et al (2016) Is fracture a bigger problem for smaller animals? Force and fracture scaling for a simple model of cutting, puncture, and crushing. Interface Focus 6:20160002

    PubMed  PubMed Central  Google Scholar 

  • Schwimmer DR, Stewart JD, Williams GD (1997) Scavenging by sharks of the genus Squalicorax in the Late Cretaceous of North America. Palaios 12:71–83

    Google Scholar 

  • Schulte-Pelkum N, Wieskotten S, Hanke W et al (2007) Tracking of biogenic hydrodynamic trails in harbour seals (Phoca vitulina). J Exp Biol 201:781–787

    Google Scholar 

  • Secor SM, Carey HV (2016) Integrative physiology of fasting. Compr. Phys. 6:773–825

    Google Scholar 

  • Segura-Zarzosa JC, Abitia-Cardenas LA, Galvan-Magana F (1997) Observations on the feeding habits of the shark Heterodontus francisci Girard 1854 (Chondrichthyes: Heterodontidae), in San Ignacio Lagoon, Baja California Sur, Mexico. Cienc Mar 23:111–128

    Google Scholar 

  • Seidel R, Lyons K, Blumer M et al (2016) Ultrastructural and developmental features of the tessellated endoskeleton of elasmobranchs (sharks and rays). J Anat 229(5):681–702

    PubMed  PubMed Central  Google Scholar 

  • Seilacher A (1979) Constructional morphology of sand dollars. Paleobiology 5:191–221

    Google Scholar 

  • Sheldon RE (1911) The sense of smell in selachians. J Exp Zool 10:51–62

    Google Scholar 

  • Shirai S, Nakaya K (1992) Functional morphology of the feeding apparatus of the cookie-cutter shark, Isistius brasiliensis (Elasmobranchii, Dalatiinae). Zool Sci 9:811–821

    Google Scholar 

  • Silver WL (1979) Olfactory responses from a marine elasmobranch, the Atlantic stingray, Dasyatis sabina. Mar Behav Physiol 6:297–305

    CAS  Google Scholar 

  • Silver WL, Caprio J, Blackwell JF et al (1976) The underwater electro-olfactogram: a tool for the study of the sense of smell of marine fishes. Experientia 32:1216–1217

    CAS  PubMed  Google Scholar 

  • Sims DW, Davies SJ (1994) Does specific dynamic action (SDA) regulate return of appetite in the lesser spotted dogfish, Scyliorhinus canicula? J Fish Biol 45:341–348

    Google Scholar 

  • Sims DW, Davies SJ, Bone Q (1996) Gastric emptying rate and return of appetite in lesser-spotted dogfish, Scyliorhinus canicula. J Mar Biol Assoc UK 76:479–491

    Google Scholar 

  • Sims DW (2000) Filter–feeding and cruising swimming speeds of basking sharks compared with optimal models: they filter–feed slower than predicted for their size. J Exp Mar Biol Ecol 249:65–76

    CAS  Google Scholar 

  • Sims DW, Wearmouth VJ, Southall EJ et al (2006) Hunt warm, rest cold: bioenergetic strategy underlying diel vertical migration of a benthic shark. J Anim Ecol 75:176–190

    PubMed  Google Scholar 

  • Sisnero JA, Rogers PH (2016) Directional hearing and sound source localization in fishes. In: Sisneros JA (ed) Fish hearing and bioacoustics. Springer International Publishing, Switzerland, pp 121–155

    Google Scholar 

  • Springer S (1967) Social organization of shark populations. In: Gilbert PW, Mattewson RF, Rall DP (eds) Sharks, Skates and Rays. Johns Hopkins Press, Baltimore, pp 149–174

    Google Scholar 

  • Stahl BJ, Parris DC (2004) The complete dentition of Edaphodon mirificus (Chondrichthyes: Holocephali) from a single individual. J Paleontol 78:388–392

    Google Scholar 

  • Strong WR Jr (1989) Behavioral ecology of horn sharks, Heterodontus francisci, at Santa Catalina Island, California, with emphasis on patterns of space utilization. MS thesis, California State University, Long Beach, CA

    Google Scholar 

  • Sullivan MX (1905) The physiology of the digestive tract of elasmobranchs. Amer J Physiol 15:42–45

    CAS  Google Scholar 

  • Summers AP (2000) Stiffening the stingray skeleton—an investigation of durophagy in myliobatid stingrays (Chondrichthyes, Batoidea, Myliobatidae). J Morphol 243:113–126

    CAS  PubMed  Google Scholar 

  • Summers AP, Ketcham R, Rowe T (2004) Structure and function of the horn shark (Heterodontus francisci) cranium through ontogeny: the development of a hard prey specialist. J Morphol 260:1–12

    PubMed  Google Scholar 

  • Tagliofierro G, Faraldi G, Pestarino M (1985) Interrelationships between somatostatin-like cells and other endocrine cells in the pancreas of some cartilaginous fish. Cell Molec Biol 31:201–207

    Google Scholar 

  • Taniuchi T, Shimizu M (1993) Dental sexual dimorphism and food habits in the stingray Dasyatis akajei from Tokyo Bay, Japan. Nippon Suisan Gekkaishi 59:53–60

    Google Scholar 

  • Taylor JG (2007) Ram filter–feeding and nocturnal feeding of whale sharks (Rhincodon typus) at Ningaloo Reef, Western Australia. Fish Res 84:65–70

    Google Scholar 

  • Tester AL (1963a) Olfaction, gustation, and the common chemical sense in sharks. In: Gilbert PW (ed) Sharks and survival. DC Heath and Company, Lexington, pp 255–282

    Google Scholar 

  • Tester AL (1963b) The role of olfaction in shark predation. Pac Sci 17:145–170

    Google Scholar 

  • Tester AL, Kato S (1966) Visual target discrimination in blacktip sharks (Carcharhinus melanopterus) and grey sharks (C. menisorrah). Pac Sci 20:461–471

    Google Scholar 

  • Tricas TC (1977) Food habits, movement and seasonal abundance of the blue shark (Prionace glauca) in southern California waters. MS Thesis. California State University Long Beach, CA, USA

    Google Scholar 

  • Tricas TC (1982) Bioelectric mediated predation by the swell shark, Cephaloscyllium ventriosum. Copeia 1982:948–952

    Google Scholar 

  • Tricas TC, McCosker JE (1984) Predatory behavior of the white shark (Carcharodon carcharias) with notes on its biology. Proc Calif Acad Sci 43:221–238

    Google Scholar 

  • Tricas TC, Kajiura SM, Summers AP (2009) Response of the hammerhead shark olfactory epithelium to amino acid stimuli. J Comp Physiol A 195:947–954

    CAS  Google Scholar 

  • Underwood CJ, Johanson Z, Welten M et al (2015) Development and evolution of dentition pattern and tooth order in the skates and rays (Batoidea: Chondrichthyes). PLOSone 10:e1022553

    Google Scholar 

  • Van-Eyk SM, Siebeck UE, Champ CM et al (2011) Behavioural evidence for colour vision in an elasmobranch. J Exp Biol 214:4186–4192

    PubMed  Google Scholar 

  • Verwaijen D, Van Damme R, Herrel A (2002) Relationships between head size, bite force, prey handling efficiency and diet in two sympatric lacertid lizards. Funct Ecol 16:842–850

    Google Scholar 

  • Vigna S (1983) Evolution of endocrine regulation of gastrointestinal function in lower vertebrates. Amer Zool 23:729–738

    CAS  Google Scholar 

  • Vincent JFV, Owers P (1986) Mechanical design of hedgehog spines and porcupine quills. J Zool Lond 210:55–75

    Google Scholar 

  • Vogel S (2003) Comparative biomechanics: life’s physical world. Princeton University Press

    Google Scholar 

  • Vullo R (2011) Direct evidence of hybodont shark predation on Late Jurassic ammonites. Naturwissenschaften 98:545–549

    CAS  PubMed  Google Scholar 

  • Wainwright PC (1999) Ecomorphology of prey capture in fishes. In: Saksena E (ed) Advances in Ichthyological research. Jiwaji University Press, Gwalior, India, pp 375–387

    Google Scholar 

  • Wainwright SA, Biggs WD, Currey JD et al (1976) Mechanical design in organisms. Princeton University Press, Princeton

    Google Scholar 

  • Wass RC (1973) Size, growth, reproduction of the sandbar shark, Carcharhinus milberti, in Hawaii. Pac Sci 27:305–318

    Google Scholar 

  • Webster DR (2007) Structure of turbulent chemical plumes. In: Woodfin RL (ed) Trace chemical sensing of explosives. Wiley, New York, pp 109–129

    Google Scholar 

  • Webster DR, Weissburg MJ (2001) Chemosensory guidance cues in a turbulent chemical odor plume. Limnol Oceanogr 46:1034–1047

    CAS  Google Scholar 

  • Weissburg MJ, Dusenbery DB, Ishida H et al (2002) A multidisciplinary study of spatial and temporal scales containing information in turbulent chemical plume tracking. Env Fluid Mech 2:65–94

    CAS  Google Scholar 

  • Wetherbee BM, Gruber SH, Ramsey AL (1987) X-radiographic observation of food passage through digestive tracts of lemon sharks. Trans Am Fisher Soc 116:763–767

    Google Scholar 

  • Wetherbee BM, Gruber SH (1990) The effects of ration level on food retention time in juvenile lemon sharks, Negaprion brevirostris. Env Biol Fish 29:59–65

    Google Scholar 

  • Wetherbee BM, Gruber SH (1993) Absorption efficiency of the lemon shark, Negaprion brevirostris, at varying rates of energy intake. Copeia 1993:416–424

    Google Scholar 

  • Whitear M, Moate RM (1994a) Chemosensory cells in the oral epithelium of Raja clavata (Chondrichtyes). J Zool 232:295–312

    Google Scholar 

  • Whitear M, Moate RM (1994b) Microanatomy of the taste buds in the dogfish, Scyliorhinus canicula. J Submicroscop Cytol Pathol 26:357–367

    Google Scholar 

  • Whitenack LB, Motta PJ (2010) Performance of shark teeth during puncture and draw: implications for the mechanics of cutting. Biol J Linn Soc 100:271–286

    Google Scholar 

  • Whitenack LB, Simkins DC Jr, Motta PJ et al (2010) Young’s modulus and hardness of shark tooth materials. Arch Oral Biol 55:203–209

    CAS  PubMed  Google Scholar 

  • Whitenack LB, Simkins DC Jr, Motta PJ (2011) Biology meets engineering: the structural mechanics of fossil and extant shark teeth. J Morphol 272:169–179

    PubMed  Google Scholar 

  • Wilga, CAD (1997) Evolution of feeding mechanisms in elasmobranchs: A functional morphological approach. Dissertation. University of South Florida

    Google Scholar 

  • Wilga CD, Motta PJ (1998a) Conservation and variation in the feeding mechanism of the spiny dogfish Squalus acanthias. J Exp Biol 201:1345–1358

    PubMed  Google Scholar 

  • Wilga CD, Motta PJ (1998b) Feeding mechanism of the Atlantic guitarfish Rhinobatos lentiginosus: modulation of kinematic and motor activity. J Exp Biol 201:3167–3183

    PubMed  Google Scholar 

  • Wilga CD, Motta PJ (2000) Durophagy in sharks: feeding mechanics of hammerhead sharks, Sphyrna tiburo. J Exp Biol 203:2781–2796

    CAS  Google Scholar 

  • Wilga CD, Hueter RE, Wainwright PC et al (2001) Evolution of upper jaw protrusion mechanisms in elasmobranchs. Amer Zool 41:1248–1257

    Google Scholar 

  • Wilga CD (2002) A functional analysis of jaw suspension in elasmobranchs. Biol J Linn Soc 75(4):483–502

    Google Scholar 

  • Wilga CD (2005) Morphology and evolution of the jaw suspension in lamniform sharks. J Morphol 265(1):102–119

    CAS  PubMed  Google Scholar 

  • Wilga CD, Motta PJ, Sanford CP (2007) Evolution and ecology of feeding in elasmobranchs. Integr Comp Biol 47(1):55–69

    PubMed  Google Scholar 

  • Wilga CD, Sanford CP (2008) Suction generation in white–spotted bamboo sharks Chiloscyllium plagiosum. J Exp Biol 211:3128–3138

    PubMed  Google Scholar 

  • Wilga CA, Diniz SE, Steele PR et al (2016) Ontogeny of feeding mechanics in smoothhound sharks: morphology and cartilage stiffness. Integr Comp Biol 56(3):442–448

    PubMed  Google Scholar 

  • Williams JG, Patel Y (2016) Fundamentals of cutting. interface. Focus 6:20150108

    CAS  Google Scholar 

  • Williams ME (1990) Feeding behavior in Cleveland Shale fishes. In: Boucot AJ (ed) Evolutionary paleobiology of behavior and coevolution. Elsevier, Amsterdam, pp 273–287

    Google Scholar 

  • Williams ME (2001) Tooth retention in cladodont sharks: with a comparison between primitive grasping and swallowing, and modern cutting and gouging feeding mechanisms. J Vert Paleontol 21:214–226

    Google Scholar 

  • Wingert RC, Terry CB, Miller BS (1979) Food and feeding habits of ecologically important nearshore and demersal fishes in central puget sound: final report. Fisheries Research Institute, College of Fisheries, University of Washington

    Google Scholar 

  • Wood CM, Kajimura M, Bucking C et al (2006) Osmoregulation, ionoregulation and acid-base regulation by the gastrointestinal tract after feeding in the elasmobranch (Squalus acanthias). J Exp Biol 210:1335–1349

    Google Scholar 

  • Wroe S, Huber DR, Lowry et al (2008) Three–dimensional computer analysis of white shark jaw mechanics: How hard can a great white bite? J Zool 276:336–342

    Google Scholar 

  • Wueringer BE, Squire L, Kajiura SM et al (2012) Electric field detection in sawfish and shovelnose rays. PLoS ONE 7:e41605

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yen J, Weissburg MJ, Doall MH (1998) The fluid physics of signal perception by mate-tracking copepods. Philos Trans R Soc Lond B Biol Sci 353:787–804

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeiske E, Caprio J, Gruber SH (1986) Morphological and electrophysiological studies on the olfactory organ of the lemon shark Negaprio brevirostris (Poey). In: Uyeno T, Arai R, Taniuchi T et al (eds) Indo-Pacific fish biology: proceedings of the second international conference on Indo-Pacific Fishes. Ichthyological Society of Japan, Tokyo, pp 381–391

    Google Scholar 

  • Zimmer-Faust RK, Finelli CM, Pentcheff ND et al (1995) Odor plumes and animal navigation in turbulent water flow: a field study. Biol Bull 188:111–116

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is dedicated to the memory of G. Rau, for inspiring a spirit of discovery and nurturing all fascinations, no matter how bizarre. The authors would like to thank the editors of this volume for inviting our contribution to the understanding of feeding in vertebrates. We would also like to recognize the many people and institutions that have contributed to our ability to develop insight into chondrichthyan biology, particularly Drs. Philip Motta and Adam Summers. They have proven a perpetual source of inspiration through their intellect and creativity, and the field of chondrichthyan feeding research is forever indebted to them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Huber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Huber, D. et al. (2019). Feeding in Cartilaginous Fishes: An Interdisciplinary Synthesis. In: Bels, V., Whishaw, I. (eds) Feeding in Vertebrates. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-13739-7_8

Download citation