Advertisement

Feeding in Birds: Thriving in Terrestrial, Aquatic, and Aerial Niches

  • Alejandro Rico-GuevaraEmail author
  • Diego Sustaita
  • Sander Gussekloo
  • Aaron Olsen
  • Jen Bright
  • Clay Corbin
  • Robert Dudley
Chapter
Part of the Fascinating Life Sciences book series (FLS)

Abstract

We start with a general description of the structure of the feeding apparatus in birds (Sect. 17.1), then we describe the biomechanics of those parts (Sect. 17.2), including a review of contemporary approaches to the study of bird feeding morphology and function. We establish explicit links between form and function, and consequent relations to foraging behaviors. In Sect. 17.3, we systematically explore the vast diversity of bird feeding environments by grouping foraging (searching) and feeding (handling—consumption) mechanisms that birds use on land, air, and water. Each one of these subsections addresses not only what birds eat, but also how they feed. We dedicate a separate Sect. (17.4) to drinking because most birds have to perform this process regardless of their diet, and often using different mechanisms than the ones they use to feed. We then discuss evolutionary forces and patterns in bird feeding (convergences, radiations, trade-offs, etc.), including functions different from handling and ingestion that also act to shape the feeding apparatus in birds (Sect. 17.5).

Notes

Acknowledgements

We are grateful to Margaret Rubega and Gregor Yanega, who have profoundly shaped our understanding of feeding birds. Comments by Fritz Hertel and Juan Pablo Gailer substantially improved the manuscript. Special thanks to Katherine Shaw for assistance with the final stages of editing.

References

  1. Abzhanov A, Kuo WP, Hartmann C, Grant BR, Grant PR, Tabin CJ (2006) The calmodulin pathway and evolution of elongated beak morphology in Darwin’s finches. Nature (Lond) 442(7102):563–567.  https://doi.org/10.1038/nature04843CrossRefGoogle Scholar
  2. Abzhanov A, Protas M, Grant BR, Grant PR, Tabin CJ (2004) Bmp4 and morphological variation of beaks in Darwin’s finches. Science (Wash DC) 305(5689):1462–1465.  https://doi.org/10.1126/science.1098095CrossRefGoogle Scholar
  3. Adams DC, Rohlf FJ, Slice DE (2013) A field comes of age: geometric morphometrics in the 21st century. Hystrix 24(1):7–14.  https://doi.org/10.4404/hystrix-24.1-6283CrossRefGoogle Scholar
  4. Ashmole NP (1971) Seabird ecology and the marine environment. In: Farner D, King J (eds) Avian biology. Academic Press, New York, pp 223–286Google Scholar
  5. Babbitt GA, Frederick PC (2007) Selection for sexual bill dimorphism in ibises: an evaluation of hypotheses. Waterbirds 30(2):199–206.  https://doi.org/10.1775/1524-4695(2007)30%5b199:sfsbdi%5d2.0.co;2
  6. Backus SB, Sustaita D, Odhner LU, Dollar AM (2015) Mechanical analysis of avian feet: multiarticular muscles in grasping and perching. R Soc Open Sci 2(2):140350.  https://doi.org/10.1098/rsos.140350CrossRefPubMedPubMedCentralGoogle Scholar
  7. Ballance LT, Pitman RL (1999) Foraging ecology of tropical seabirds. In: Adams N, Slotow R (eds) Proceedings of the 22nd international ornithological congress. BirdLife South Africa, Durban, pp 2057–2207Google Scholar
  8. Bartholomew GA, Cade TJ (1963) The water economy of land birds. Auk 80(4):504–539.  https://doi.org/10.2307/4082856CrossRefGoogle Scholar
  9. Baumel JJ, King AS, Breazile JE, Evans HE, Vanden Berge JC (1993) Handbook of avian anatomy: nomina anatomica avium. Nuttall Ornithological Club, CambridgeGoogle Scholar
  10. Baumel JJ, Raikow RJ (1993) Arthrologia. In: Baumel JJ, King AS, Breazile JE, Evans HE, Vanden Berge JC (eds) Handbook of avian anatomy: nomina anatomica avium. Nuttall Ornithological Club, Cambridge, pp 133–187Google Scholar
  11. Baumel JJ, Witmer LM (1993) Osteologia. In: Baumel JJ, King AS, Breazile JE, Evans HE, Vanden Berge JC (eds) Handbook of avian anatomy: nomina anatomica avium. Nuttall Ornithological Club, Cambridge, pp 45–132Google Scholar
  12. Baussart S, Bels V (2011) Tropical hornbills (Aceros cassidix, Aceros undulatus, and Buceros hydrocorax) use ballistic transport to feed with their large beaks. J Exp Zool Part A 315(2):72–83.  https://doi.org/10.1002/jez.590CrossRefGoogle Scholar
  13. Baussart S, Korsoun L, Libourel P, Bels V (2009) Ballistic food transport in toucans. J Exp Zool Part A 311(7):465–474.  https://doi.org/10.1002/jez.542CrossRefGoogle Scholar
  14. Becker M, Rubega MA, Oring LW (2002) Development of feeding mechanics in growing birds: scything behavior in juvenile American avocets (Recurvirostra americana). Bird Behav 15(1):1–10Google Scholar
  15. Beecher WJ (1951) Adaptations for food-getting in the American blackbirds. Auk 68(4):411–440.  https://doi.org/10.2307/4080840CrossRefGoogle Scholar
  16. Bels VL, Chardon M, Kardong KV (1994) Biomechanics of the hyolingual system in Squamata. In: Gilles R (ed) Advances in comparative and environmental physiology. Springer, Berlin Heidelberg, pp 197–240Google Scholar
  17. Benkman CW (2003) Divergent selection drives the adaptive radiation of crossbills. Evolution 57(5):1176–1181.  https://doi.org/10.1111/j.0014-3820.2003.tb00326.xCrossRefPubMedGoogle Scholar
  18. Berkhoudt H (1979) The morphology and distribution of cutaneous mechanoreceptors (Herbst and Grandry corpuscles) in bill and tongue of the mallard (Anas platyrhynchos L.). Neth J Zool 30(1):1–34.  https://doi.org/10.1173/002829680x00014
  19. Berkhoudt H (1985) Structure and function of avian taste receptors. Academic Press, San Diego, CaliforniaGoogle Scholar
  20. Berman SL (1984) The hindlimb musculature of the white-fronted amazon (Amazona albifrons, Psittaciformes). Auk 101(1):74–92Google Scholar
  21. Berman SL, Raikow RJ (1982) The hindlimb musculature of the mousebirds (Coliiformes). Auk 99(1):41–57.  https://doi.org/10.2307/4086020CrossRefGoogle Scholar
  22. Bermejo R, Remy M, Zeigler HP (1992) Jaw movement kinematics and jaw muscle (EMG) activity during drinking in the pigeon (Columba livia). J Comp Physiol A 170(3):303–309.  https://doi.org/10.1007/BF00191418CrossRefPubMedGoogle Scholar
  23. Bhullar BS, Marugán-Lobón J, Racimo F, Bever GS, Rowe TB, Norell MA, Abzhanov A (2012) Birds have paedomorphic dinosaur skulls. Nature (Lond) 487(7406):223–226.  https://doi.org/10.1038/nature11146CrossRefGoogle Scholar
  24. Bhullar BS, Morris ZS, Sefton EM, Tok A, Tokita M, Namkoong B, Camacho J, Burnham DA, Abzhanov A (2015) A molecular mechanism for the origin of a key evolutionary innovation, the bird beak and palate, revealed by an integrative approach to major transitions in vertebrate history. Evolution 69(7):1765–1777.  https://doi.org/10.1111/evo.12684CrossRefGoogle Scholar
  25. Bierregaard RO (1978) Morphological analyses of community structure in birds of prey. PhD thesis. University of PennsylvaniaGoogle Scholar
  26. BirdLife International B (2015) The BirdLife checklist of the birds of the world: Version 8. http://www.birdlifeorg/datazone/info/taxonomy
  27. Bock WJ (1964) Kinetics of the avian skull. J Morphol 114(1):1–41.  https://doi.org/10.1002/jmor.1051140102CrossRefGoogle Scholar
  28. Bock WJ (1966) An approach to the functional analysis of bill shape. Auk 83(1):10–51.  https://doi.org/10.2307/4082976CrossRefGoogle Scholar
  29. Bock WJ (1999) Functional and evolutionary morphology of woodpeckers. Ostrich 70(1):23–31.  https://doi.org/10.1080/00306525.1999.9639746CrossRefGoogle Scholar
  30. Bock WJ, Morony J (1978) The preglossale of Passer (Aves: Passeriformes)—a skeletal neomorph. J Morphol 155(1):99–109.  https://doi.org/10.1002/jmor.1051550107CrossRefPubMedGoogle Scholar
  31. Böker H (1938) Die anatomische Konstruktion zur Erweiterung des Unterschnabels bei den Pelikanen. Anat Anz 87:294–303Google Scholar
  32. Bout R, Zeigler HP (1994) Jaw muscle (EMG) activity and amplitude scaling of jaw movements during eating in pigeon (Columba livia). J Comp Physiol A 174(4):433–442.  https://doi.org/10.1007/BF00191709CrossRefPubMedGoogle Scholar
  33. Bout RG, Zweers GA (2001) The role of cranial kinesis in birds. Comp Biochem Physiol Part A Mol Integr Physiol 131(1):197–205.  https://doi.org/10.1017/S1095-6433(01)00470-6CrossRefGoogle Scholar
  34. Bowman RI (1961) Morphological differentiation and adaptation in the Galápagos finches. University of California Press, Los Angeles, CAGoogle Scholar
  35. Brewer ML, Hertel F (2007) Wing morphology and flight behavior of pelecaniform seabirds. J Morphol 268(10):866–877.  https://doi.org/10.1002/jmor.10555CrossRefPubMedGoogle Scholar
  36. Bright JA (2014) A review of paleontological finite element models and their validity. J Paleontol 88(4):760–769.  https://doi.org/10.1766/13-090CrossRefGoogle Scholar
  37. Bright JA, Marugán-Lobón J, Cobb SN, Rayfield EJ (2016) The shapes of bird beaks are highly controlled by nondietary factors. Proc Natl Acad Sci 113(19):5352–5357.  https://doi.org/10.1073/pnas.1702683113CrossRefGoogle Scholar
  38. Bucher EH, Tamburini D, Abril A, Torres P (2003) Folivory in the white-tipped plantcutter Phytotoma rutila: seasonal variations in diet composition and quality. J Avian Biol 34(2):211–217.  https://doi.org/10.1034/j.1700-048X.2003.03020.xCrossRefGoogle Scholar
  39. Bühler P (1970) Schädelmorphologie und kiefermechanik der Caprimulgidae (Aves). Z Morphol Tiere 66(4):337–399.  https://doi.org/10.1007/BF00305707CrossRefGoogle Scholar
  40. Bühler P (1981) Functional anatomy of the avian jaw apparatus. In: King AS, McLellard J (eds) Form and function in birds. Academic Press, New York, pp 439–468Google Scholar
  41. Burton PJK (1971) Comparative anatomy of head and neck in the Spoon-billed sandpiper, Eurynorhynchus pygmeus and its allies. J Zool (Lond) 173(2):145–173.  https://doi.org/10.1111/j.1469-7998.1971.tb04529.xCrossRefGoogle Scholar
  42. Burton PJK (1977) Lower jaw action during prey capture by pelicans. Auk 94(4):785–786CrossRefGoogle Scholar
  43. Cade TJ (1995) Shrikes as predators. Proc West Found Vertebr Zool 6(1):1–5Google Scholar
  44. Cade TJ, Greenwald LI (1966) Drinking behavior of mousebirds in the Namib Desert, southern Africa. Auk 83:126–128.  https://doi.org/10.2307/4082984CrossRefGoogle Scholar
  45. Cade TJ, Willoughby EJ, MacLean GL (1966) Drinking behavior of sandgrouse in the Namib and Kalahari deserts, Africa. Auk 83:124–126.  https://doi.org/10.2307/4082983CrossRefGoogle Scholar
  46. Campàs O, Mallarino R, Herrel A, Abzhanov A, Brenner MP (2010) Scaling and shear transformations capture beak shape variation in Darwin’s finches. Proc Natl Acad Sci 107(8):3356–3360.  https://doi.org/10.1073/pnas.0911575107CrossRefPubMedGoogle Scholar
  47. Cannell BL, Cullen JM (1998) The foraging behaviour of little penguins Eudyptula minor at different light levels. Ibis 140(3):467–471.  https://doi.org/10.1111/j.1474-919X.1998.tb04608.xCrossRefGoogle Scholar
  48. Casperson LW (1999) Head movement and vision in underwater-feeding birds of stream, lake, and seashore. Bird Behav 13(1):31–46.  https://doi.org/10.3727/096020199389707CrossRefGoogle Scholar
  49. Cecere JG, Spina F, Jenni-Eiermann S, Boitani L (2011) Nectar: an energy drink used by European songbirds during spring migration. J Ornithol 152(4):923–931.  https://doi.org/10.1007/s10336-011-0675-4CrossRefGoogle Scholar
  50. Chaine AS, Lyon BE (2008) Adaptive plasticity in female mate choice dampens sexual selection on male ornaments in the lark bunting. Science (Wash DC) 319(5862):459–462.  https://doi.org/10.1126/science.1149177CrossRefGoogle Scholar
  51. Cherel Y, Bocher P, De BC, Hobson KA (2002) Food and feeding ecology of the sympatric thin-billed Pachyptila belcheri and Antarctic P. desolata prions at Iles Kerguelen, Southern Indian Ocean. Mar Ecol Prog Ser 228:263–281.  https://doi.org/10.3354/meps228263CrossRefGoogle Scholar
  52. Chira AM, Cooney CR, Bright JA, Capp EJR, Hughes EC, Moody CJA, Nouri LO, Varley ZK, Thomas GH (2018) Correlates of rate heterogeneity in avian ecomorphological traits. Ecol Lett 21(10):1505–1514.  https://doi.org/10.1111/ele.13131CrossRefPubMedPubMedCentralGoogle Scholar
  53. Claramunt S (2010) Discovering exceptional diversifications at continental scales: the case of the endemic families of Neotropical suboscine passerines. Evolution 64(7):2004–2019.  https://doi.org/10.1111/j.1558-5646.2010.00971.xCrossRefPubMedGoogle Scholar
  54. Clark GA (1973) Holding food with the feet in passerines. Bird 44(2):91–99.  https://doi.org/10.2307/4511942CrossRefGoogle Scholar
  55. Clark L, Hagelin J, Werner S (2015) The chemical senses in birds. Academic Press, London.  https://doi.org/10.1017/b978-0-12-407170-5.00007-5
  56. Clayton DH, Cotgreave P (1994) Relationship of bill morphology to grooming behaviour in birds. Anim Behav 47(1):195–201.  https://doi.org/10.1006/anbe.1994.1022CrossRefGoogle Scholar
  57. Clayton DH, Koop JAH, Harbison CW, Moyer BR, Bush SE (2010) How birds combat ectoparasites. Open Ornithol J 3(3):41–71CrossRefGoogle Scholar
  58. Clayton DH, Moyer BR, Bush SE, Jones TG, Gardiner DW, Rhodes BB, Goller F (2005) Adaptive significance of avian beak morphology for ectoparasite control. Proc R Soc Lond B Biol Sci 272(1565):811–817.  https://doi.org/10.1098/rspb.2004.3036CrossRefGoogle Scholar
  59. Collar N (2017) Parrots (Psittacidae). In: del Hoyo J, Elliott A, Sargatal J, Christie DA, de Juana E (eds) Handbook of the birds of the world alive. Lynx Edicions, BarcelonaGoogle Scholar
  60. Collins BG (2008) Nectar intake and foraging efficiency: responses of honeyeaters and hummingbirds to variations in floral environments. Auk 125(3):574–587CrossRefGoogle Scholar
  61. Cooney CR, Bright JA, Capp EJR, Chira AM, Hughes EC, Moody CJA, Nouri LO, Varley ZK, Thomas GH (2017) Mega-evolutionary dynamics of the adaptive radiation of birds. Nature (Lond) 542(7641):344–347.  https://doi.org/10.1038/nature21074CrossRefGoogle Scholar
  62. Corbin CE (2008) Foraging ecomorphology within North American flycatchers and a test of concordance with southern African species. J Ornithol 149(1):83–95.  https://doi.org/10.1007/s10336-007-0221-6CrossRefGoogle Scholar
  63. Corbin CE, Kirika MJ (2002) Foraging behaviour of brown-hooded kingfishers (Halcyon alviventris) in the East Usambara Mountains, Tanzania. Afr Zool 37(1):47–54CrossRefGoogle Scholar
  64. Corbin CE, Lowenberger LK, Dorkoski RP (2013) The skeleton flight apparatus of North American bluebirds (Sialia): phylogenetic thrushes or functional flycatchers? J Morphol 274(8):909–917CrossRefGoogle Scholar
  65. Corbin CE, Lowenberger LK, Gray BL (2015) Linkage and trade-off in trophic morphology and behavioural performance of birds. Funct Ecol 29(6):808–815.  https://doi.org/10.1111/1365-2435.12385CrossRefGoogle Scholar
  66. Corlett RT (1998) Frugivory and seed dispersal by vertebrates in the Oriental (Indomalayan) Region. Biol Rev (Camb) 73(4):413–448.  https://doi.org/10.1111/j.1469-185X.1998.tb00178.xCrossRefGoogle Scholar
  67. Corlett RT (2011) How to be a frugivore (in a changing world). Acta Oecol 37(6):674–681.  https://doi.org/10.1017/j.actao.2011.01.005CrossRefGoogle Scholar
  68. Crole MR, Soley JT (2015) Contrasting morphological evidence for the presence of taste buds in Dromaius novaehollandiae and Struthio camelus (Palaeognathae, Aves). Zoomorphology (Berl) 134(3):499–507.  https://doi.org/10.1007/s00435-015-0268-5CrossRefGoogle Scholar
  69. Csermely D, Bertè L, Camoni R (1998) Prey killing by Eurasian kestrels: the role of the foot and the significance of bill and talons. J Avian Biol 29(1):10–17.  https://doi.org/10.2307/3677335CrossRefGoogle Scholar
  70. Csermely D, Rossi O, Nasi F (2012) Comparison of claw geometrical characteristics among birds of prey and non-raptorial birds. Ital J Zool 79(3):410–433.  https://doi.org/10.1080/11250003.2012.663003CrossRefGoogle Scholar
  71. Cuff AR, Bright JA, Rayfield EJ (2015) Validation experiments on finite element models of an ostrich (Struthio camelus) cranium. PeerJ 3:e1294.  https://doi.org/10.7717/peerj.1294CrossRefPubMedPubMedCentralGoogle Scholar
  72. Cuff AR, Rayfield EJ (2015) Retrodeformation and muscular reconstruction of ornithomimosaurian dinosaur crania. PeerJ 3:e1093.  https://doi.org/10.7717/peerj.1093CrossRefPubMedPubMedCentralGoogle Scholar
  73. Cunningham SJ, Corfield JR, Iwaniuk AN, Castro I, Alley MR, Birkhead TR, Parsons S (2013) The anatomy of the bill tip of kiwi and associated somatosensory regions of the brain: comparisons with shorebirds. PLoS One 8(11):e80036.  https://doi.org/10.1371/journal.pone.0080036CrossRefPubMedPubMedCentralGoogle Scholar
  74. Curtis N (2011) Craniofacial biomechanics: an overview of recent multibody modelling studies. J Anat 218(1):17–25.  https://doi.org/10.1111/j.1469-7580.2010.01317.xCrossRefGoogle Scholar
  75. Dalsgaard B, Baquero AC, Rahbek C, Olesen JM, Wiley JW (2017) Speciose opportunistic nectar-feeding avifauna in Cuba and its association to hummingbird island biogeography. J Ornithol 157(2):627–634.  https://doi.org/10.1007/s10336-017-1326-6CrossRefGoogle Scholar
  76. Davis JL, Santana SE, Dumont ER, Grosse IR (2010) Predicting bite force in mammals: two-dimensional versus three-dimensional lever models. J Exp Biol 213(11):1844–1851.  https://doi.org/10.1242/jeb.041129CrossRefPubMedGoogle Scholar
  77. Dawson MM, Metzger KA, Baier DB, Brainerd EL (2011) Kinematics of the quadrate bone during feeding in mallard ducks. J Exp Biol 214(12):2036–2046.  https://doi.org/10.1242/jeb.047159CrossRefGoogle Scholar
  78. Degrange FJ, Tambussi CP, Moreno K, Witmer LM, Wroe S (2010) Mechanical analysis of feeding behavior in the extinct “terror bird” Andalgalornis steulleti (Gruiformes: Phorusrhacidae). PLoS One 5(8):e11856.  https://doi.org/10.1371/journal.pone.0011856CrossRefPubMedPubMedCentralGoogle Scholar
  79. del Hoyo J, Elliot A, Sargatal J (1992) Handbook of the birds of the world. Lynx Editions, BarcelonaGoogle Scholar
  80. del Hoyo J, Elliott A, Sargatal J, Christie DA, de Juana E (2014) Handbook of the birds of the world alive. Lynx Edicions, Barcelona. Retrieved from www.hbw.com
  81. Demery ZP, Chappell J, Martin GR (2011) Vision, touch and object manipulation in Senegal parrots Poicephalus senegalus. Proc R Soc Lond B Biol Sci 278(1725):3687–3693.  https://doi.org/10.1098/rspb.2011.0374CrossRefGoogle Scholar
  82. Denbow D.M. (2015) Gastrointestinal anatomy and physiology. Academic Press, London.  https://doi.org/10.1017/b978-0-12-407170-5.00014-2
  83. Downs CT (2004) Some preliminary results of studies on the bill and tongue morphology of Gurney’s Sugarbird and some southern African sunbirds. Ostrich 75(3):179–175.  https://doi.org/10.2989/00306520409485432CrossRefGoogle Scholar
  84. Duan Q, Goodale E, Quan R (2014) Bird fruit preferences match the frequency of fruit colours in tropical Asia. Sci Rep 4:5627.  https://doi.org/10.1038/srep05627CrossRefPubMedPubMedCentralGoogle Scholar
  85. Dubbeldam JL (1984) Brainstem mechanisms for feeding in birds: interaction or plasticity. Brain Behav Evol 25(2–3):85–98.  https://doi.org/10.1159/000118854CrossRefPubMedGoogle Scholar
  86. Dudley R (2002) Mechanisms and implications of animal flight maneuverability. Integr Comp Biol 42(1):135–140.  https://doi.org/10.1093/icb/42.1.135CrossRefPubMedGoogle Scholar
  87. Dudley R, Vermeij GJ (1992) Do the power requirements of flapping flight constrain folivory in flying animals? Funct Ecol 6(1):101–104Google Scholar
  88. Einoder L, Richardson A (2007) The digital tendon locking mechanism of owls: variation in the structure and arrangement of the mechanism and functional implications. Emu 107(3):223–230.  https://doi.org/10.1071/MU06019CrossRefGoogle Scholar
  89. Elner RW, Beninger PG, Jackson DL, Potter TM (2005) Evidence of a new feeding mode in western sandpiper (Calidris mauri) and dunlin (Calidris alpina) based on bill and tongue morphology and ultrastructure. Mar Biol 146(6):1223–1234.  https://doi.org/10.1007/s00227-004-1521-5CrossRefGoogle Scholar
  90. Elzanowski A (1977) On the role of basipterygoid processes in some birds. Verh Anat Ges 71(2):1303Google Scholar
  91. Erdoğan S, Iwasaki S (2014) Function-related morphological characteristics and specialized structures of the avian tongue. Ann Anat Anat Anz 196(2):75–87.  https://doi.org/10.1017/j.aanat.2013.09.005CrossRefGoogle Scholar
  92. Espaillat JE, Mason JR (1990) Differences in taste preference between red-winged blackbirds and European starlings. Wilson Bull 102(2):292–299Google Scholar
  93. Estades CF (2003) Sap feeding by the green-backed firecrown (Sephanoides sephanoides). Ornitol Colomb 14:531–533Google Scholar
  94. Estrella SM, Masero JA (2007) The use of distal rhynchokinesis by birds feeding in water. J Exp Biol 210(21):3757–3762.  https://doi.org/10.1242/jeb.007690CrossRefPubMedGoogle Scholar
  95. Estrella SM, Masero JA, Pérez-Hurtado A, Hepp GR (2007) Small-prey profitability: field analysis of shorebirds’ use of surface tension of water transport prey. Auk 124(4):1244–1253.  https://doi.org/10.1742/0004-8038(2007)124%5b1244:spfaos%5d2.0.co;2
  96. Ferguson-Lees J, Christie DA (2001) Raptors of the world. Helm Identification Guides, London, UKGoogle Scholar
  97. Fisher CD, Lindgren E, Dawson WR (1972) Drinking patterns and behavior of Australian desert birds in relation to their ecology and abundance. Condor 74(2):111–136.  https://doi.org/10.2307/1366276CrossRefGoogle Scholar
  98. Fisher HI (1955) Some aspects of the kinetics in the jaws of birds. Wilson Bull 63(3):175–188Google Scholar
  99. Fitzpatrick JW (1980) Foraging behavior of Neotropical tyrant flycatchers. Condor 82(1):43–57.  https://doi.org/10.2307/1366784CrossRefGoogle Scholar
  100. Fjeldså J, Irestedt M, Ericson PGP (2005) Molecular data reveal some major adaptational shifts in the early evolution of the most diverse avian family, the Furnariidae. J Ornithol 146(1):1–13.  https://doi.org/10.1007/s10336-004-0054-5CrossRefGoogle Scholar
  101. Foster DJ, Podos J, Hendry AP (2008) A geometric morphometric appraisal of beak shape in Darwin’s finches. J Evol Biol 21(1):263–275.  https://doi.org/10.1111/j.1420-9101.2007.01449.xCrossRefPubMedGoogle Scholar
  102. Fowler DW, Freedman EA, Scannella JB (2009) Predatory functional morphology in raptors: interdigital variation in talon size is related to prey restraint and immobilisation technique. PLoS One 4(11):e7999.  https://doi.org/10.1371/journal.pone.0007999CrossRefPubMedPubMedCentralGoogle Scholar
  103. Gadow H (1883) On the suctorial apparatus of the Tenuirostres. In: Proceedings of the zoological society of LondonGoogle Scholar
  104. Gailer JP, Calandra I, Schulz-Kornas E, Kaiser TM (2017) Morphology is not destiny: discrepancy between form, function and dietary adaptation in bovid cheek teeth. J Mamm Evol 23(4):369–383.  https://doi.org/10.1007/s10914-017-9325-1CrossRefGoogle Scholar
  105. Gartrell BD (2000) The nutritional, morphologic, and physiologic bases of nectarivory in Australian birds. J Avian Med Surg 14(2):85–94.  https://doi.org/10.1747/1082-6742(2000)014%5b0085:tnmapb%5d2.0.co;2
  106. Genbrugge A, Adriaens D, Kegel B, Brabant L, Hoorebeke L, Podos J, Dirckx J, Aerts P, Herrel A (2012) Structural tissue organization in the beak of Java and Darwin’s finches. J Anat 221(5):383–393.  https://doi.org/10.1111/j.1469-7580.2012.01561.xCrossRefPubMedPubMedCentralGoogle Scholar
  107. Genbrugge A, Heyde A, Adriaens D, Boone M, Van Hoorebeke L, Dirckx J, Aerts P, Podos J, Herrel A (2011) Ontogeny of the cranial skeleton in a Darwin’s finch (Geospiza fortis). J Anat 219(2):115–131.  https://doi.org/10.1111/j.1469-7580.2011.01388.xCrossRefPubMedPubMedCentralGoogle Scholar
  108. Gerritsen AFC (1988) Feeding techniques and the anatomy of the bill in sandpipers (Calidris). PhD thesis. Rijksuniversiteit te LeidenGoogle Scholar
  109. Gerritsen AFC, Meiboom A (1985) The role of touch in prey density estimation by Calidris alba. Neth J Zool 36(4):530–561.  https://doi.org/10.1173/002829686X00217CrossRefGoogle Scholar
  110. Gibson LJ (2006) Woodpecker pecking: how woodpeckers avoid brain injury. J Zool (Lond) 270(3):462–465.  https://doi.org/10.1111/j.1469-7998.2006.00176.xCrossRefGoogle Scholar
  111. Gignac PM, Kley NJ, Clarke JA, Colbert MW, Morhardt AC, Cerio D, Cost IN, Cox PG, Daza JD, Early CM et al (2016) Diffusible iodine-based contrast-enhanced computed tomography (diceCT): an emerging tool for rapid, high-resolution, 3-D imaging of metazoan soft tissues. J Anat 228(6):889–909.  https://doi.org/10.1111/joa.12449CrossRefGoogle Scholar
  112. Giraudeau M, Nolan PM, Black CE, Earl SR, Hasegawa M, McGraw KJ (2014) Song characteristics track bill morphology along a gradient of urbanization in house finches (Haemorhous mexicanus). Front Zool 11(1):83.  https://doi.org/10.1186/s12983-014-0083-8CrossRefPubMedPubMedCentralGoogle Scholar
  113. Givnish TJ (2015) Adaptive radiation versus ‘radiation’ and ‘explosive diversification’: why conceptual distinctions are fundamental to understanding evolution. New Phytol 207(2):297–303.  https://doi.org/10.1111/nph.13482CrossRefPubMedGoogle Scholar
  114. Gonzales RS, Ingle NR, Lagunzad DA, Nakashizuka T (2009) Seed dispersal by birds and bats in lowland Philippine forest successional area. Biotropica 41(4):452–458.  https://doi.org/10.1111/j.1744-7429.2009.00501.xCrossRefGoogle Scholar
  115. Goswami A, Smaers JB, Soligo C, Polly PD (2014) The macroevolutionary consequences of phenotypic integration: from development to deep time. Philos Trans R Soc Lond B Biol Sci 369(1749):20130254.  https://doi.org/10.1098/rstb.2013.0254CrossRefPubMedPubMedCentralGoogle Scholar
  116. Gotceitas V, Godin JJ (1993) Effects of aerial and in-stream threat of predation on foraging by juvenile Atlantic salmon (Salmo salar). In: Gibson RJ, Cutting RE (eds) Canadian special publication of fisheries and aquatic sciences, p 35–41Google Scholar
  117. Grajal A, Strahl SD, Parra R, Dominguez MG, Neher A (1989) Foregut fermentation in the hoatzin, a neotropical leaf-eating bird. Science (Wash DC) 245(4923):1236–1238.  https://doi.org/10.1126/science.245.4923.1236CrossRefGoogle Scholar
  118. Grant BR, Grant PR (1993) Evolution of Darwin’s finches caused by a rare climatic event. Proc R Soc Lond B Biol Sci 251(1331):111–117.  https://doi.org/10.1098/rspb.1993.0017CrossRefGoogle Scholar
  119. Grant PR (1999) Ecology and evolution of Darwin’s finches. Princeton University Press, Princeton, New JerseyGoogle Scholar
  120. Greenberg R, Cadena V, Danner RM, Tattersall G (2012) Heat loss may explain bill size differences between birds occupying different habitats. PLoS One 7(7):e40933.  https://doi.org/10.1371/journal.pone.0040933CrossRefPubMedPubMedCentralGoogle Scholar
  121. Greenberg R, Etterson M, Danner RM (2013) Seasonal dimorphism in the horny bills of sparrows. Ecol Evol 3(2):389–398.  https://doi.org/10.1002/ece3.474CrossRefPubMedPubMedCentralGoogle Scholar
  122. Grémillet D, Enstipp MR, Boudiffa M, Liu H (2006) Do cormorants injure fish without eating them? An underwater video study. Mar Biol 148(5):1081–1087.  https://doi.org/10.1007/s00227-005-0130-2CrossRefGoogle Scholar
  123. Gurd BD (2006) Filter-feeding dabbling ducks (Anas spp.) can actively select particles by size. Zoology (Jena) 109(2):120–126.  https://doi.org/10.1017/j.zool.2005.10.002
  124. Gurd DB (2007) Predicting resource partitioning and community organization of filter-feeding dabbling ducks from functional morphology. Am Nat 179(3):334–343.  https://doi.org/10.1086/510924CrossRefGoogle Scholar
  125. Gurd DB (2008) Mechanistic analysis of interspecific competition using foraging trade-offs: implications for duck assemblages. Ecology 89(2):495–505.  https://doi.org/10.1890/06-1545.1CrossRefPubMedGoogle Scholar
  126. Gussekloo SW, Vosselman MG, Bout RG (2001) Three-dimensional kinematics of skeletal elements in avian prokinetic and rhynchokinetic skulls determined by Roentgen stereophotogrammetry. J Exp Biol 204(10):1735–1744PubMedGoogle Scholar
  127. Gussekloo SWS, Berthaume MA, Pulaski DR, Westbroek I, Waarsing JH, Heinen R, Grosse IR, Dumont ER (2017) Functional and evolutionary consequences of cranial fenestration in birds. Evolution 71(5):1327–1338.  https://doi.org/10.1111/evo.13210CrossRefPubMedGoogle Scholar
  128. Gussekloo SWS, Bout RG (2005) Cranial kinesis in palaeognathous birds. J Exp Biol 208(17):3409–3419.  https://doi.org/10.1242/jeb.01768CrossRefPubMedGoogle Scholar
  129. Hamilton RB (1975) Comparative behavior of the American Avocet and the Black-necked stilt (Recurvirostridae). Ornithol Monogr 17:iii–iii98.  https://doi.org/10.2307/40176701CrossRefGoogle Scholar
  130. Harper PC (1987) Feeding behaviour and other notes on 20 species of Procellariiformes at sea. Notornis 34(3):179–192Google Scholar
  131. Heidweiller J, van LJA, Zweers GA (1992) Flexibility of the drinking mechanism in adult chickens (Gallus gallus) (Aves). Zoomorphology (Berl) 111(3):141–159.  https://doi.org/10.1007/bf01732904
  132. Heidweiller J, Zweers GA (1990) Drinking mechanisms in the zebra finch and the Bengalese finch. Condor 92(1):1–28.  https://doi.org/10.2307/1368379CrossRefGoogle Scholar
  133. Heidweiller J, Zweers GA (1992) Development of drinking mechanisms in the chicken (Gallus gallus) (Aves). Zoomorphology (Berl) 111(4):217–228.  https://doi.org/10.1007/BF01733010CrossRefGoogle Scholar
  134. Herrel A, Podos J, Vanhooydonck B, Hendry AP (2009) Force-velocity trade-off in Darwin’s finch jaw function: a biomechanical basis for ecological speciation? Funct Ecol 23(1):119–125.  https://doi.org/10.1111/j.1365-2435.2008.01494.xCrossRefGoogle Scholar
  135. Herrel A, Soons J, Aerts P, Dirckx J, Boone M, Jacobs P, Adriaens D, Podos J (2010) Adaptation and function of the bills of Darwin’s finches: divergence by feeding type and sex. Emu 110(1):39–47.  https://doi.org/10.1071/MU09034CrossRefGoogle Scholar
  136. Hertel F (1994) Diversity in body size and feeding morphology within past and present vulture assemblages. Ecology 75(4):1074–1084.  https://doi.org/10.2307/1939431CrossRefGoogle Scholar
  137. Hertel F (1995) Ecomorphological indicators of feeding behavior in recent and fossil raptors. Auk 112(4):890–903.  https://doi.org/10.2307/4089021CrossRefGoogle Scholar
  138. Hertel F, Ballance LT (1999) Wing ecomorphology of seabirds from Johnston Atoll. Condor 101(3):549–556.  https://doi.org/10.2307/1370184CrossRefGoogle Scholar
  139. Hertel F, Maldonado JE, Sustaita D (2015) Wing and hindlimb myology of vultures and raptors (Accipitriformes) in relation to locomotion and foraging. Acta Zool (Stockh) 96(3):283–295.  https://doi.org/10.1111/azo.12074CrossRefGoogle Scholar
  140. Hill RV, D’Emic MD, Bever GS, Norell MA (2015) A complex hyobranchial apparatus in a Cretaceous dinosaur and the antiquity of avian paraglossalia. Zool J Linn Soc 175(4):892–909.  https://doi.org/10.1111/zoj.12293CrossRefGoogle Scholar
  141. Hoese WJ, Westneat MW (1996) Biomechanics of cranial kinesis in birds: testing linkage models in the white-throated sparrow (Zonotrichia albicollis). J Morphol 227(3):305–320.  https://doi.org/10.1002/(SICI)1097-4687(199603)227:3%3c305:AID-JMOR3%3e3.0.CO;2-4CrossRefPubMedGoogle Scholar
  142. Homberger DG (1980) Functional morphology and evolution of the feeding apparatus in parrots, with special reference to the Pesquet’s Parrot, Psittrichas fulgidus (lesson). In: Conservation of new world parrots. Vol. Proceedings of the ICBP parrot working group meeting, St. LuciaGoogle Scholar
  143. Homberger DG (1986) The lingual apparatus of the African grey parrot, Psittacus erithacus Linné (Aves: Psittacidae): description and theoretical mechanical analysis. In: NANA NA (ed) Ornithological monographs no. 39. The American Ornithologists’ Union, Washington, D.C., p 1–233Google Scholar
  144. Homberger DG (1988) Models and tests in functional morphology: the significance of description and integration. Am Zool 28(1):217–229.  https://doi.org/10.1093/icb/28.1.217CrossRefGoogle Scholar
  145. Homberger DG (2003) The comparative biomechanics of a prey-predator relationship: the adaptive morphologies of the feeding apparatus of Australian Black-Cockatoos and their foods as a basis for the reconstruction of the evolutionary history of the Psittaciformes. In: Bels VL, Gasc JP, Casinos A (eds) Vertebrate biomechanics and evolution. BIOS Scientific Publishers, Oxford, UK, pp 203–228Google Scholar
  146. Homberger DG (2017) The avian lingual and laryngeal apparatus within the context of the head and jaw apparatus, with comparisons to the mammalian condition: functional morphology and biomechanics of evaporative cooling, feeding, drinking, and vocalization. In: Maina J (ed) The biology of the avian respiratory system: evolution, development, structure and function. Springer, New York, pp 27–97CrossRefGoogle Scholar
  147. Homberger DG, Meyers RA (1989) Morphology of the lingual apparatus of the domestic chicken, Gallus gallus, with special attention to the structure of the fasciae. Am J Anat 186(3):217–257.  https://doi.org/10.1002/aja.1001860302CrossRefPubMedGoogle Scholar
  148. Huber SK, Podos J (2006) Beak morphology and song features covary in a population of Darwin’s finches (Geospiza fortis). Biol J Linn Soc 88(3):489–498.  https://doi.org/10.1111/j.1095-8312.2006.00638.xCrossRefGoogle Scholar
  149. Hulscher JB (1976) Localisation of cockles (Cardium edule L.) by the oystercatcher (Haematopus ostralegus L.) in darkness and daylight. Ardea 64(2):92–310Google Scholar
  150. Iwasaki S (2002) Evolution of the structure and function of the vertebrate tongue. J Anat 201(1):1–13.  https://doi.org/10.1046/j.1469-7580.2002.00073.xCrossRefPubMedPubMedCentralGoogle Scholar
  151. Jaksić FM, Carothers JH (1985) Ecological, morphological, and bioenergetic correlates of hunting mode in hawks and owls. Ornis Scand 17(3):175–172.  https://doi.org/10.2307/3676627CrossRefGoogle Scholar
  152. Jardine CB, Bond AL, Davidson PJA, Butler RW, Kuwae T (2015) Biofilm consumption and variable diet composition of western sandpipers (Calidris mauri) during migratory stopover. PLoS One 10(4):e0124174.  https://doi.org/10.1371/journal.pone.0124174CrossRefGoogle Scholar
  153. Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, Ho SYW, Faircloth BC, Nabholz B, Howard JT, Suh A et al (2014) Whole-genome analyses resolve early branches in the tree of life of modern birds. Science (Wash DC) 346(6215):1320–1331.  https://doi.org/10.1126/science.1253451CrossRefGoogle Scholar
  154. Jenkin PM (1957) The filter-feeding and food of flamingoes (Phoenicopteri). Philos Trans R Soc Lond B Biol Sci 240(674):401–493CrossRefGoogle Scholar
  155. Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO (2012) The global diversity of birds in space and time. Nature (Lond) 491(7424):444–448.  https://doi.org/10.1038/nature11731CrossRefGoogle Scholar
  156. Jønsson KA, Fabre P, Fritz SA, Etienne RS, Ricklefs RE, Jørgensen TB, Fjeldså J, Rahbek C, Ericson PGP, Woog F et al (2012) Ecological and evolutionary determinants for the adaptive radiation of the Madagascan vangas. Proc Natl Acad Sci 109(17):6620–6625.  https://doi.org/10.1073/pnas.1115835109CrossRefPubMedGoogle Scholar
  157. Judin KA (1961) On mechanism of the jaw in Charadriformes, Procellariiformes, and some other birds. Tr Zool Inst Len 29:257–302Google Scholar
  158. Kelsey MG, Hassall M (1989) Patch selection by Dunlin on a heterogeneous mudflat. Ornis Scand 20(4):250–254.  https://doi.org/10.2307/3676488CrossRefGoogle Scholar
  159. Kevan PG, Baker HG (1983) Insects as flower visitors and pollinators. Annu Rev Entomol 28(1):407–453CrossRefGoogle Scholar
  160. Kim W, Peaudecerf F, Baldwin MW, Bush JW (2012) The hummingbird’s tongue: a self-assembling capillary syphon. Proc R Soc Biol Sci Ser B 279(1749):20121837Google Scholar
  161. Klages NTW, Cooper J (1992) Bill morphology and diet of a filter-feeding seabird: the broad-billed prion Pachyptila vittata at South Atlantic Gough Island. J Zool (Lond) 227(3):385–396.  https://doi.org/10.1111/j.1469-7998.1992.tb04401.xCrossRefGoogle Scholar
  162. Klingenberg CP (2013) Visualizations in geometric morphometrics: how to read and how to make graphs showing shape changes. Hystrix 24(1):15–24.  https://doi.org/10.4404/hystrix-24.1-7691CrossRefGoogle Scholar
  163. Klingenberg CP, Marugán-Lobón J (2013) Evolutionary covariation in geometric morphometric data: analyzing integration, modularity, and allometry in a phylogenetic context. Syst Biol 62(4):591–610.  https://doi.org/10.1093/sysbio/syt025CrossRefPubMedGoogle Scholar
  164. Kooloos JGM (1986) A conveyer-belt model for pecking in the mallard (Anas platyrhynchos L.). Neth J Zool 36(1):47–87.  https://doi.org/10.1173/002829685x00406
  165. Kooloos JGM, Kraaijeveld AR, Langenbach GEJ, Zweers GA (1989) Comparative mechanics of filter feeding in Anas platyrhynchos, Anas clypeata and Aythya fuligula (Aves, Anseriformes). Zoomorphology (Berl) 108(5):269–290.  https://doi.org/10.1007/BF00312170CrossRefGoogle Scholar
  166. Kooloos JGM, Zweers GA (1989) Mechanics of drinking in the mallard (Anas platyrhynchos, Anatidae). J Morphol 199(3):327–347.  https://doi.org/10.1002/jmor.1051990308CrossRefPubMedGoogle Scholar
  167. Kulemeyer C, Asbahr K, Gunz P, Frahnert S, Bairlein F (2009) Functional morphology and integration of corvid skulls-a 3D geometric morphometric approach. Front Zool 6(2):2–2.  https://doi.org/10.1186/1742-9994-6-2CrossRefGoogle Scholar
  168. Kuwae T, Beninger PG, Decottignies P, Mathot KJ, Lund DR, Elner RW (2008) Biofilm grazing in a higher vertebrate: the western sandpiper, Calidris mauri. Ecology 89(3):599–606.  https://doi.org/10.1890/07-1442.1CrossRefPubMedGoogle Scholar
  169. Kuwae T, Miyoshi E, Hosokawa S, Ichimi K, Hosoya J, Amano T, Moriya T, Kondoh M, Ydenberg RC, Elner RW (2012) Variable and complex food web structures revealed by exploring missing trophic links between birds and biofilm. Ecol Lett 15(4):347–356.  https://doi.org/10.1111/j.1461-0248.2012.01744.xCrossRefPubMedGoogle Scholar
  170. Lagerström MC, Hellström AR, Gloriam DE, Larsson TP, Schiöth HB, Fredriksson R (2006) The G protein-coupled receptor subset of the chicken genome. PLoS Comput Biol 2(6):e54.  https://doi.org/10.1371/journal.pcbi.0020054CrossRefPubMedPubMedCentralGoogle Scholar
  171. Lauder GV (1995) On the inference of function from structure. Cambridge University Press, Cambridge, UKGoogle Scholar
  172. Lautenschlager S, Bright JA, Rayfield EJ (2014) Digital dissection-using contrast-enhanced computed tomography scanning to elucidate hard-and soft-tissue anatomy in the Common Buzzard Buteo buteo. J Anat 224(4):412–431.  https://doi.org/10.1111/joa.12153CrossRefPubMedGoogle Scholar
  173. Lautenschlager S, Witmer LM, Altangerel P, Rayfield EJ (2013) Edentulism, beaks, and biomechanical innovations in the evolution of theropod dinosaurs. Proc Natl Acad Sci 110(51):20657–20662.  https://doi.org/10.1073/pnas.1310711110CrossRefPubMedGoogle Scholar
  174. Lee N, Horstemeyer MF, Rhee H, Nabors B, Liao J, Williams LN (2014) Hierarchical multiscale structure-property relationships of the red-bellied woodpecker (Melanerpes carolinus) beak. J Royal Soc Interface 11(96):20140274.  https://doi.org/10.1098/rsif.2014.0274CrossRefGoogle Scholar
  175. Lentink D, Müller UK, Stamhuis EJ, De Kat R, Van Gestel W, Veldhuis LLM, Henningsson P, Hedenström A, Videler JJ, Van Leeuwen JL (2007) How swifts control their glide performance with morphing wings. Nature (Lond) 446(7139):1082–1085.  https://doi.org/10.1038/nature05733CrossRefGoogle Scholar
  176. Li Z, Zhou Z, Clarke JA (2018) Convergent evolution of a mobile bony tongue in flighted dinosaurs and pterosaurs. PLoS One 13(6):e0198078.  https://doi.org/10.1371/journal.pone.0198078CrossRefPubMedPubMedCentralGoogle Scholar
  177. Lorenz T, Campello M (2012) Biomechanics of skeletal muscle. In: Nordin M, Frankel VH (eds) Basic biomechanics of the musculoskeletal system. Lippincott Williams & Wilkins, Baltimore, pp 151–175Google Scholar
  178. Louchart A, Viriot L (2011) From snout to beak: the loss of teeth in birds. Trends Ecol Evol 26(12):663–673.  https://doi.org/10.1017/j.tree.2011.09.004CrossRefPubMedGoogle Scholar
  179. Lovette IJ, Bermingham E, Ricklefs RE (2002) Clade-specific morphological diversification and adaptive radiation in Hawaiian songbirds. Proc R Soc Lond B Biol Sci 269(1486):37–42.  https://doi.org/10.1098/rspb.2001.1789CrossRefGoogle Scholar
  180. Lovvorn JR, Baduini CL, Hunt GL (2001) Modeling underwater visual and filter feeding by planktivorous shearwaters in unusual sea conditions. Ecology 82(8):2342–2356.  https://doi.org/10.1890/0012-9658(2001)082%5b2342:muvaff%5d2.0.co;2CrossRefGoogle Scholar
  181. Lucas AM, Stettenheim PR (1972) Avian anatomy. Integument, Vol II. U.S. Government Printing Office, Washington, D.CGoogle Scholar
  182. Lucas FA (1895) The tongues of birds. Auk 12(2):186–187CrossRefGoogle Scholar
  183. Machovsky Capuska GE, Vaughn RL, Würsig B, Katzir G, Raubenheimer D (2011) Dive strategies and foraging effort in the Australasian gannet Morus serrator revealed by underwater videography. Mar Ecol Prog Ser 442:255–261.  https://doi.org/10.3354/meps09458CrossRefGoogle Scholar
  184. Mallarino R, Grant PR, Grant BR, Herrel A, Kuo WP, Abzhanov A (2011) Two developmental modules establish 3D beak-shape variation in Darwin’s finches. Proc Natl Acad Sci 108(10):4057–4062.  https://doi.org/10.1073/pnas.1011480108CrossRefPubMedGoogle Scholar
  185. Marroig G, Cheverud JM, Wainwright P (2005) Size as a line of least evolutionary resistance: diet and adaptive morphological radiation in New World monkeys. Evolution 59(5):1128–1142.  https://doi.org/10.1554/04-333CrossRefPubMedGoogle Scholar
  186. Marroig G, Shirai LT, Porto A, de OFB, De CV (2009) The evolution of modularity in the mammalian skull II: evolutionary consequences. Evol Biol (NY) 36(1):136–148.  https://doi.org/10.1007/s11792-009-9051-1
  187. Martin GR, Katzir G (1994) Visual fields and eye movements in herons (Ardeidae). Brain Behav Evol 44(2):74–85.  https://doi.org/10.1159/000113571CrossRefPubMedGoogle Scholar
  188. Marugán-Lobón J, Miranda DB, Chamero B, Abad HM (2013) On the importance of examining the relationship between shape data and biologically meaningful variables. An example studying allometry with geometric morphometrics. Rev Esp Paleontol 28(2):139–148Google Scholar
  189. Mascitti V, Kravetz FO (2002) Bill morphology of South American flamingos. Condor 104(1):73–83.  https://doi.org/10.1750/0010-5422(2002)104%5b0073:BMOSAF%5d2.0.CO;2CrossRefGoogle Scholar
  190. Matthysen E (1989) Seasonal variation in bill morphology of nuthatches Sitta europaea: dietary adaptations or consequences. Ardea 77(1):117–125Google Scholar
  191. McBrayer LD, Corbin CE (2007) Patterns of head shape variation in lizards: morphological correlates of foraging mode. In: Reilly SM, McBrayer LB, Miles DB (eds) Lizard ecology: the evolutionary consequences of foraging mode. Cambridge University Press, Cambridge, pp 271–301CrossRefGoogle Scholar
  192. McLelland J (1979) Digestive system. Academic Press, San Diego, CaliforniaGoogle Scholar
  193. McSweeney T, Stoskopf MK (1988) Selected anatomical features of the neck and gular sac of the brown pelican (Pelecanus occidentalis). J Zoo Anim Med 19(3):117–121.  https://doi.org/10.2307/20094867CrossRefGoogle Scholar
  194. Meekangvan P, Barhorst AA, Burton TD, Chatterjee S, Schovanec L (2006) Nonlinear dynamical model and response of avian cranial kinesis. J Theor Biol 240(1):32–47.  https://doi.org/10.1017/j.jtbi.2005.08.027CrossRefPubMedGoogle Scholar
  195. Meyers RA, Myers RP (2005) Mandibular bowing and mineralization in brown pelicans. Condor 107(2):445–449.  https://doi.org/10.1750/7743CrossRefGoogle Scholar
  196. Mills JA, Mark AF (1977) Food preferences of takahe in Fiordland National Park, New Zealand, and the effect of competition from introduced red deer. J Anim Ecol 46(3):939–958.  https://doi.org/10.2307/3651CrossRefGoogle Scholar
  197. Milton SJ, Dean WRJ, Siegfried WR (1994) Food selection by ostrich in southern Africa. J Wildl Manag 58(2):234–248.  https://doi.org/10.2307/3809386CrossRefGoogle Scholar
  198. Moermond TC (1983) Suction-drinking in tanagers Thraupidae and its relation to frugivory. Ibis 125(4):545–549.  https://doi.org/10.1111/j.1474-919X.1983.tb03147.xCrossRefGoogle Scholar
  199. Moller W (1931) Vorläufige Mitteilung über die Ergebnisse einer Forschungsreise nach Costa Rica zu Studien über die Biologie blütenbesuchender Vögel. Biol Gen 7:651–726Google Scholar
  200. Moran ET, Stilborn HL (1996) Effect of glutamic acid on broilers given submarginal crude protein with adequate essential amino acids using feeds high and low in potassium. Poult Sci 75(1):120–129.  https://doi.org/10.3382/ps.0750120CrossRefPubMedGoogle Scholar
  201. Moreno R, Stowasser G, McGill RAR, Bearhop S, Phillips RA (2017) Assessing the structure and temporal dynamics of seabird communities: the challenge of capturing marine ecosystem complexity. J Anim Ecol 85(1):199–212.  https://doi.org/10.1111/1365-2656.12434CrossRefGoogle Scholar
  202. Morgan WL, Ritz DA (1982) Comparison of the feeding apparatus in the muttonbird, Puffinus tenuirostris (Temminck) and the fairy prion, Pachyptila turtur (Kuhl) in relation to the capture of the krill, Nyctiphanes australis Sars. J Exp Mar Biol Ecol 59(1):61–75.  https://doi.org/10.1017/0022-0981(82)90107-1CrossRefGoogle Scholar
  203. Morton ES (1978) Avian arboreal folivores: why not? In: The ecology of arboreal folivores: a symposium held at The Conservation and Research Center, National Zoological Park, Smithsonian Institution, Washington, DC, May 29–31, 1975Google Scholar
  204. Mouritsen KN (1993) Diurnal and nocturnal prey detection by dunlins Calidris alpina. Bird Study 40(3):212–215.  https://doi.org/10.1080/00063659309477185CrossRefGoogle Scholar
  205. Moyle RG, Filardi CE, Smith CE, Diamond J (2009) Explosive Pleistocene diversification and hemispheric expansion of a “great speciator”. Proc Natl Acad Sci 106(6):1863–1868.  https://doi.org/10.1073/pnas.0809861105CrossRefPubMedGoogle Scholar
  206. Moyle RG, Fuchs J, Pasquet E, Marks BD (2007) Feeding behavior, toe count, and the phylogenetic relationships among alcedinine kingfishers (Alcedininae). J Avian Biol 38(3):317–326.  https://doi.org/10.1111/J.2007.0908-8857.03921.xCrossRefGoogle Scholar
  207. Munson ES, Robinson WD (1992) Extensive folivory by Thick-billed Saltators (Saltator maxillosus) in southern Brazil. Auk 109(4):917–919.  https://doi.org/10.2307/4088175CrossRefGoogle Scholar
  208. Nebel S, Jackson DL, Elner RW (2005) Functional association of bill morphology and foraging behaviour in calidrid sandpipers. Anim Biol 55(3):235–243.  https://doi.org/10.1173/1570756054472818CrossRefGoogle Scholar
  209. Newton I (1967) The adaptive radiation and feeding ecology of some British finches. Ibis 109(1):33–96.  https://doi.org/10.1111/j.1474-919X.1967.tb00005.xCrossRefGoogle Scholar
  210. Olsen AM (2015) Exceptional avian herbivores: multiple transitions toward herbivory in the bird order Anseriformes and its correlation with body mass. Ecol Evol 5(21):5017–5032.  https://doi.org/10.1002/ece3.1787CrossRefGoogle Scholar
  211. Olsen AM (2017) Feeding ecology is the primary driver of beak shape diversification in waterfowl. Funct Ecol 31(10):1985–1995.  https://doi.org/10.1111/1365-2435.12890CrossRefGoogle Scholar
  212. Olsen AM, Westneat MW (2017) Linkage mechanisms in the vertebrate skull: structure and function of three-dimensional, parallel transmission systems. J Morphol 277(12):1570–1583.  https://doi.org/10.1002/jmor.20596CrossRefGoogle Scholar
  213. Olson SL, Feduccia A (1980) Presbyornis and the origin of the Anseriformes. Smithson Contrib Zool 323:1–24Google Scholar
  214. Orians GH, Pearson NE (1979) On the theory of central place foraging. In: Horn D, Mitchell R, Stairs G (eds) Analysis of ecological systems. The Ohio State University Press, Columbus, pp 155–177Google Scholar
  215. Owre OT (1967) Adaptations for locomotion and feeding in the Anhinga and the Double-crested Cormorant. Ornithol Monogr 6:1–138.  https://doi.org/10.2307/40176666CrossRefGoogle Scholar
  216. Paton DC, Collins BG (1989) Bills and tongues of nectar-feeding birds: a review of morphology, function and performance, with intercontinental comparisons. Austral Ecol 14(4):473–506.  https://doi.org/10.1111/j.1442-9993.1989.tb01457.xCrossRefGoogle Scholar
  217. Payne RS (1962) The acoustical location of prey by the Barn Owl (Tyto alba). PhD thesis. Cornell UniversityGoogle Scholar
  218. Pierce RJ (1985) Feeding methods of stilts (Himantopus spp.). N Z J Zool 12(4):467–472.  https://doi.org/10.1080/03014223.1985.10428298CrossRefGoogle Scholar
  219. Piersma T, van AR, Kurk K, Berkhoudt H, Maas LRM (1998) A new pressure sensory mechanism for prey detection in birds: the use of principles of seabed dynamics? Proc R Soc Lond B Biol Sci 265(1404):1377–1383.  https://doi.org/10.1098/rspb.1998.0445CrossRefGoogle Scholar
  220. Pitcher TJ, Lang SH, Turner JA (1988) A risk-balancing trade off between foraging rewards and predation hazard in a shoaling fish. Behav Ecol Sociobiol 22(3):225–228.  https://doi.org/10.1007/BF00300573CrossRefGoogle Scholar
  221. Podos J (2001) Correlated evolution of morphology and vocal signal structure in Darwin’s finches. Nature (Lond) 409(6817):185–188.  https://doi.org/10.1038/35051570CrossRefGoogle Scholar
  222. Podos J, Nowicki S (2004) Beaks, adaptation, and vocal evolution in Darwin’s finches. Bioscience 54(6):501–510.  https://doi.org/10.1741/0006-3568(2004)054%5b0501:BAAVEI%5d2.0.CO;2CrossRefGoogle Scholar
  223. Prakash M, Quéré D, Bush JWM (2008) Surface tension transport of prey by feeding shorebirds: the capillary ratchet. Science (Wash DC) 320(5878):931–934.  https://doi.org/10.1126/science.1156023CrossRefGoogle Scholar
  224. Prince PA, Morgan RA (1987) Diet and feeding ecology of Procellariiformes. In: Croxall JP (ed) Seabirds: feeding ecology and role in marine ecosystems. Cambridge University Press, Cambridge, pp 135–172Google Scholar
  225. Proctor NS, Lynch PJ (1993) Manual of ornithology: avian structure and function. Yale University Press, New Haven, CT, USAGoogle Scholar
  226. Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP, Lemmon EM, Lemmon AR (2015) A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature (Lond) 526:569–573.  https://doi.org/10.1038/nature15697CrossRefGoogle Scholar
  227. Quayle MR, Barnes DG, Kaluza OL, McHenry CR (2014) An interactive three dimensional approach to anatomical description—the jaw musculature of the Australian laughing kookaburra (Dacelo novaeguineae). PeerJ 2:e355.  https://doi.org/10.7717/peerj.355CrossRefPubMedPubMedCentralGoogle Scholar
  228. Rayfield EJ (2007) Finite element analysis and understanding the biomechanics and evolution of living and fossil organisms. Annu Rev Earth Planet Sci 35:541–576.  https://doi.org/10.1146/annurev.earth.35.031306.140104CrossRefGoogle Scholar
  229. Rayfield EJ (2011) Strain in the ostrich mandible during simulated pecking and validation of specimen-specific finite element models. J Anat 218(1):47–58.  https://doi.org/10.1111/j.1469-7580.2010.01296.xCrossRefPubMedPubMedCentralGoogle Scholar
  230. Recher HF, Recher JA (1968) Comments on the escape of prey from avian predators. Ecology 49(3):560–562.  https://doi.org/10.2307/1934125CrossRefGoogle Scholar
  231. Reilly SM, McBrayer LD, White TD (2001) Prey processing in amniotes: biomechanical and behavioral patterns of food reduction. Comp Biochem Physiol Part A Mol Integr Physiol 128(3):397–415.  https://doi.org/10.1017/S1095-6433(00)00326-3CrossRefGoogle Scholar
  232. Remsen JJV, Parker TA (1984) Arboreal dead-leaf-searching birds of the Neotropics. Condor 86(1):36–41.  https://doi.org/10.2307/1367341CrossRefGoogle Scholar
  233. Rensch B, Neunzig R (1925) Experimentelle Untersuchungen über den Geschmackssinn der Vögel II. J Ornithol 73(4):633–646.  https://doi.org/10.1007/BF01906226CrossRefGoogle Scholar
  234. Rico-Guevara A (2008) Morfología y forrajeo para buscar artrópodos por colibríes altoandinos. Ornitol Colomb 7:43–58Google Scholar
  235. Rico-Guevara A (2014) Morphology and function of the drinking apparatus in hummingbirds. PhD thesis. University of ConnecticutGoogle Scholar
  236. Rico-Guevara A, Araya-Salas M (2015) Bills as daggers? A test for sexually dimorphic weapons in a lekking hummingbird. Behav Ecol 26(1):21–29.  https://doi.org/10.1093/beheco/aru182CrossRefGoogle Scholar
  237. Rico-Guevara A, Fan T, Rubega MA (2015) Hummingbird tongues are elastic micropumps. Proc R Soc Biol Sci Ser B 282(1813):20151014.  https://doi.org/10.1098/rspb.2015.1014CrossRefGoogle Scholar
  238. Rico-Guevara A, Hurme KJ (2019) Intrasexually selected weapons. Biol Rev (Camb) 94:60–101.  https://doi.org/10.1111/brv.12436CrossRefGoogle Scholar
  239. Rico-Guevara A, Rubega MA (2011) The hummingbird tongue is a fluid trap, not a capillary tube. Proc Natl Acad Sci 108(23):9356–9360.  https://doi.org/10.1073/pnas.1017944108CrossRefPubMedGoogle Scholar
  240. Rico-Guevara A, Rubega MA (2017) Functional morphology of hummingbird bill tips: their function as tongue wringers. Zool 123:1–10CrossRefGoogle Scholar
  241. Riede T, Li Z, Tokuda IT, Farmer CG (2015) Functional morphology of the Alligator mississippiensis larynx with implications for vocal production. J Exp Biol 218(7):991–998.  https://doi.org/10.1242/jeb.117101CrossRefPubMedGoogle Scholar
  242. Roura E, Baldwin MW, Klasing KC (2013) The avian taste system: Potential implications in poultry nutrition. Anim Feed Sci Technol 180(1):1–9.  https://doi.org/10.1017/j.anifeedsci.2012.11.001CrossRefGoogle Scholar
  243. Rubega MA (1997) Surface tension prey transport in shorebirds: how widespread is it? Ibis 139(3):488–493.  https://doi.org/10.1111/j.1474-919X.1997.tb04663.xCrossRefGoogle Scholar
  244. Rubega MA (2000) Feeding in birds: approaches and opportunities. In: Schwenk K (ed) Feeding: form, function and evolution in tetrapod vertebrates. Academic Press, San Diego, CA, pp 395–408CrossRefGoogle Scholar
  245. Rubega MA, Obst BS (1993) Surface-tension feeding in phalaropes: discovery of a novel feeding mechanism. Auk 110(2):179–178Google Scholar
  246. Ruschi PA (2014) Frugivory by the hummingbird Chlorostilbon notatus (Apodiformes: Trochilidae) in the Brazilian Amazon. Bol Mus Biol Mello Leitão 35:43–47Google Scholar
  247. Sakamoto M (2010) Jaw biomechanics and the evolution of biting performance in theropod dinosaurs. Proc R Soc Lond B Biol Sci 277(1798):3327–3333.  https://doi.org/10.1098/rspb.2010.0794CrossRefGoogle Scholar
  248. Sanford RC, Harris SW (1967) Feeding behavior and food-consumption rates of a captive California murre. Condor 69(3):298–302.  https://doi.org/10.2307/1366319CrossRefGoogle Scholar
  249. Schlamowitz R, Hainsworth FR, Wolf LL (1976) On the tongues of sunbirds. Condor 78(1):104–107.  https://doi.org/10.2307/1366927CrossRefGoogle Scholar
  250. Schön M (1996) Raptor-like passerines-some similarities and differences of shrikes (Lanius) and raptors. Oecol Voegel 18:173–217Google Scholar
  251. Schondube JE (2003) Flowerpiercers and hummingbirds: a comparative study of nectar feeding strategies in birds. PhD thesis. University of ArizonaGoogle Scholar
  252. Schondube JE, Martinez del Rio C (2003) The flowerpiercers’ hook: an experimental test of an evolutionary trade-off. Proc R Soc Lond B Biol Sci 270(1511):195–198CrossRefGoogle Scholar
  253. Schwenk K (2000) Feeding in Lepidosaurs. Academic Press, San Diego, CACrossRefGoogle Scholar
  254. Schwenk K, Rubega M (2005) Diversity of vertebrate feeding systems. Science Publishers, Enfield, CT, USAGoogle Scholar
  255. Sedinger JS (1997) Adaptations to and consequences of an herbivorous diet in grouse and waterfowl. Condor 99(2):314–326.  https://doi.org/10.2307/1369937CrossRefGoogle Scholar
  256. Seki Y, Kad B, Benson D, Meyers MA (2006) The toucan beak: structure and mechanical response. Mater Sci Eng, C 26(8):1412–1420CrossRefGoogle Scholar
  257. Seki Y, Schneider MS, Meyers MA (2005) Structure and mechanical behavior of a toucan beak. Acta Mater 53(20):5281–5296.  https://doi.org/10.1017/j.actamat.2005.04.048CrossRefGoogle Scholar
  258. Shi P, Zhang J (2006) Contrasting modes of evolution between vertebrate sweet/umami receptor genes and bitter receptor genes. Mol Biol Evol 23(2):292–300.  https://doi.org/10.1093/molbev/msj028CrossRefPubMedGoogle Scholar
  259. Si G, Dong Y, Ma Y, Zhang Z (2015) Shape similarities and differences in the skulls of scavenging raptors. Zool Sci (Tokyo) 32(2):171–177.  https://doi.org/10.2108/zs130253CrossRefGoogle Scholar
  260. Smith ML, Yanega GM, Ruina A (2011) Elastic instability model of rapid beak closure in hummingbirds. J Theor Biol 282(1):41–51.  https://doi.org/10.1017/j.jtbi.2011.05.007CrossRefPubMedGoogle Scholar
  261. Snow BK (1974) Lek behaviour and breeding of Guy’s Hermit hummingbird Phaethornis guy. Ibis 117(3):278–297.  https://doi.org/10.1111/j.1474-919X.1974.tb00125.xCrossRefGoogle Scholar
  262. Soons J, Genbrugge A, Podos J, Adriaens D, Aerts P, Dirckx J, Herrel A (2015) Is beak morphology in Darwin’s finches tuned to loading demands? PLoS One 10(6):e0129479.  https://doi.org/10.1371/journal.pone.0129479CrossRefPubMedPubMedCentralGoogle Scholar
  263. Soons J, Herrel A, Genbrugge A, Adriaens D, Aerts P, Dirckx J (2012) Multi-layered bird beaks: a finite-element approach towards the role of keratin in stress dissipation. J R Soc Interface 9(73):1787–1796.  https://doi.org/10.1098/rsif.2011.0910CrossRefPubMedPubMedCentralGoogle Scholar
  264. Soons J, Herrel A, Genbrugge A, Aerts P, Podos J, Adriaens D, De WY, Jacobs P, Dirckx J (2010) Mechanical stress, fracture risk and beak evolution in Darwin’s ground finches (Geospiza). Philos Trans R Soc Lond B Biol Sci 365(1543):1093–1098.  https://doi.org/10.1098/rstb.2009.0280CrossRefPubMedPubMedCentralGoogle Scholar
  265. Stiles FG (1981) Geographical aspects of bird-flower coevolution, with particular reference to Central America. Ann Mo Bot Gard 68(2):323–351.  https://doi.org/10.2307/2398801CrossRefGoogle Scholar
  266. Stiles FG (1995) Behavioral, ecological and morphological correlates of foraging for arthropods by the hummingbirds of a tropical wet forest. Condor 97(4):853–878.  https://doi.org/10.2307/1369527CrossRefGoogle Scholar
  267. Stiles FG, Wolf LL (1979) Ecology and evolution of lek mating behavior in the long-tailed hermit hummingbird. Ornithol Monogr 27:iii–iii78.  https://doi.org/10.2307/40176760CrossRefGoogle Scholar
  268. Sustaita D (2008) Musculoskeletal underpinnings to differences in killing behavior between North American accipiters (Falconiformes: Accipitridae) and falcons (Falconidae). J Morphol 269(3):283–301.  https://doi.org/10.1002/jmor.10577CrossRefPubMedGoogle Scholar
  269. Sustaita D, Rico-Guevara A, Hertel F (2018a) Foraging Behavior. In: Morrison ML, Rodewald AD, Voelker G, Colón MR, Prather JF (eds) Ornithology: foundation, analysis, and application. Johns Hopkins University Press, Baltimore, pp 439–492Google Scholar
  270. Sustaita D, Rubega MA, Farabaugh SM (2018b) Come on baby, let’s do the twist: the kinematics of killing in loggerhead shrikes. Biol Lett 14(9):20180321.  https://doi.org/10.1098/rsbl.2018.0321CrossRefPubMedGoogle Scholar
  271. Swennen C, Yu Y (2004) Notes on feeding structures of the Black-faced Spoonbill Platalea minor. Ornithol Sci 3(2):119–124.  https://doi.org/10.2326/osj.3.119CrossRefGoogle Scholar
  272. Swennen C, Yu Y (2005) Food and feeding behavior of the black-faced spoonbill. Waterbirds 28(1):19–27.  https://doi.org/10.1775/1524-4695(2005)028%5b0019:FAFBOT%5d2.0.CO;2CrossRefGoogle Scholar
  273. Swennen C, Yu Y (2008) Bill sweeping in spoonbills Platalea: no evidence for an effective suction force at the tip. J Avian Biol 39(1):3–6.  https://doi.org/10.1111/j.0908-8857.2008.04299.xCrossRefGoogle Scholar
  274. Symes CT, Downs CT (2001) Feeding and energy intake in two avian frugivores, the Black-eyed Bulbul Pycnonotus barbartus (Passeriformes: Pycnonotidae) and Speckled Mousebird Colius striatus (Passeriformes: Coliidae). Durban Mus Novit 26:20–24Google Scholar
  275. Symonds MRE, Tattersall GJ (2010) Geographical variation in bill size across bird species provides evidence for Allen’s rule. Am Nat 176(2):188–197.  https://doi.org/10.1086/653666CrossRefPubMedGoogle Scholar
  276. Tattersall GJ, Andrade DV, Abe AS (2009) Heat exchange from the toucan bill reveals a controllable vascular thermal radiator. Science (Wash DC) 325(5939):468–470.  https://doi.org/10.1126/science.1175553CrossRefGoogle Scholar
  277. Tattersall GJ, Arnaout B, Symonds MRE (2017) The evolution of the avian bill as a thermoregulatory organ. Biol Rev (Camb) 92(3):1730–1756.  https://doi.org/10.1111/brv.12299CrossRefGoogle Scholar
  278. Tebbich S, Taborsky M, Fessl B, Dvorak M, Winkler H (2004) Feeding behavior of four arboreal Darwin’s finches: adaptations to spatial and seasonal variability. Condor 106(1):95–105.  https://doi.org/10.1750/7293CrossRefGoogle Scholar
  279. Tomback DF (1998) Clark’s Nutcracker (Nucifraga columbiana). In: Rodewald PG (ed) The birds of North America. Cornell Lab of Ornithology, Ithaca. Retrieved from https://birdsna.org/Species-Account/bna/species/clanut
  280. Tomlinson CAB (2000) Feeding in paleognathous birds. In: Schwenk K (ed) Feeding: form, function and evolution in tetrapod vertebrates. Academic Press, San Diego, CA, pp 359–394CrossRefGoogle Scholar
  281. Trewick S (1996) The diet of kakapo (Strigops habroptilus), takahe (Porphyrio mantelli) and pukeko (P. porphyrio melanotus) studied by faecal analysis. Notornis 43:79–112Google Scholar
  282. Urano Y, Tanoue K, Matsumoto R, Kawabe S, Ohashi T, Fujiwara S (2018) How does the curvature of the upper beak bone reflect the overlying rhinotheca morphology? J Morphol 279(5):636–647.  https://doi.org/10.1002/jmor.20799CrossRefPubMedGoogle Scholar
  283. Van den Heuvel WF (1992) Kinetics of the skull in the chicken (Gallus gallus domesticus). Neth J Zool 42(4):561–582.  https://doi.org/10.1173/156854292X00071CrossRefGoogle Scholar
  284. Van den Heuvel WF, Berkhoudt H (1997) Pecking in the chicken (Gallus gallus domesticus): motion analysis and stereotypy. Neth J Zool 48(3):273–303.  https://doi.org/10.1173/156854298X00129CrossRefGoogle Scholar
  285. Van der Leeuw AHJ, Kurk K, Snelderwaard PC, Bout RG, Berkhoudt H (2003) Conflicting demands on the trophic system of Anseriformes and their evolutionary implications. Anim Biol 53:259–302.  https://doi.org/10.1173/157075603322539453CrossRefGoogle Scholar
  286. Van der Meij MAA, Bout RG (2006) Seed husking time and maximal bite force in finches. J Exp Biol 209(17):3329–3335.  https://doi.org/10.1242/jeb.02379CrossRefPubMedGoogle Scholar
  287. Van der Meij MAA, Bout RG (2008) The relationship between shape of the skull and bite force in finches. J Exp Biol 211(10):1768–1780.  https://doi.org/10.1242/jeb.015289CrossRefGoogle Scholar
  288. Van Gennip E, Berkhoudt H (1992) Skull mechanics in the pigeon, Columba livia, a three-dimensional kinematic model. J Morphol 213(2):197–224.  https://doi.org/10.1002/jmor.1052130206CrossRefPubMedGoogle Scholar
  289. Van Hemert C, Handel CM, Blake JE, Swor RM, O’Hara TM (2012) Microanatomy of passerine hard-cornified tissues: beak and claw structure of the black-capped chickadee (Poecile atricapillus). J Morphol 273(2):226–240.  https://doi.org/10.1002/jmor.11023CrossRefPubMedGoogle Scholar
  290. Vanden Berge JC, Zweers GA (1993) Myologia. In: Baumel JJ, King AS, Breazile JE, Evans HE, Vanden Berge JC (eds) Handbook of avian anatomy: nomina anatomica avium. Nuttall Ornithological Club, Cambridge, pp 189–247Google Scholar
  291. Villmoare B (2013) Morphological integration, evolutionary constraints, and extinction: a computer simulation-based study. Evol Biol (NY) 40(1):76–83.  https://doi.org/10.1007/s11792-012-9186-3CrossRefGoogle Scholar
  292. Warrick DR (1998) The turning-and linear-maneuvering performance of birds: the cost of efficiency for coursing insectivores. Can J Zool 76(6):1063–1079.  https://doi.org/10.1139/z98-044CrossRefGoogle Scholar
  293. Wattel J (1973) Geographical differentiation in the genus Accipiter. Nuttall Ornithological Club, Cambridge, MACrossRefGoogle Scholar
  294. Weihs D, Katzir G (1994) Bill sweeping in the spoonbill, Platalea leucordia: evidence for a hydrodynamic function. Anim Behav 47(3):649–654.  https://doi.org/10.1006/anbe.1994.1088CrossRefGoogle Scholar
  295. Weihs D, Katzir G (2008) Eurasian spoonbills Platalea leucordia are good hydrodynamicists after all: reply to Swennen and Yu. J Avian Biol 39(1):7–8.  https://doi.org/10.1111/j.0908-8857.2008.04392.xCrossRefGoogle Scholar
  296. Wilman H, Belmaker J, Simpson J, de LRC, Rivadeneira MM, Jetz W (2014) EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95(7):2027–2027.  https://doi.org/10.1890/13-1917.1CrossRefGoogle Scholar
  297. Wood JR, Rawlence NJ, Rogers GM, Austin JJ, Worthy TH, Cooper A (2008) Coprolite deposits reveal the diet and ecology of the extinct New Zealand megaherbivore moa (Aves, Dinornithiformes). Quat Sci Rev 27:2593–2602.  https://doi.org/10.1017/j.quascirev.2008.09.019CrossRefGoogle Scholar
  298. Yanega GM (2007) A comparative study of the functional morphology and ecology of insectivory in hummingbirds. PhD thesis. University of ConnecticutGoogle Scholar
  299. Yanega GM, Rubega MA (2004) Feeding mechanisms: hummingbird jaw bends to aid insect capture. Nature (Lond) 428(6983):615.  https://doi.org/10.1038/428615aCrossRefGoogle Scholar
  300. Yoon S, Park S (2011) A mechanical analysis of woodpecker drumming and its application to shock-absorbing systems. Bioinsp Biomim 6(1):017003CrossRefGoogle Scholar
  301. Yosef R, Pinshow B (2005) Impaling in true shrikes (Laniidae): a behavioral and ontogenetic perspective. Behav Process 69(3):363–367.  https://doi.org/10.1017/j.beproc.2005.02.023CrossRefGoogle Scholar
  302. Young NM, Linde-Medina M, Fondon JW, Hallgrímsson B, Marcucio RS (2017) Craniofacial diversification in the domestic pigeon and the evolution of the avian skull. Nat Ecol Evol 1(4):0095.  https://doi.org/10.1038/s41559-017-0095CrossRefGoogle Scholar
  303. Zelditch ML, Swiderski DL, Sheets HD (2012) Geometric morphometrics for biologists: a primer, 2nd edn. Academic Press, New YorkGoogle Scholar
  304. Zusi RL (1967) The role of the depressor mandibulae muscle in kinesis of the avian skull. Proc U S Natl Mus 123(3607):1–28CrossRefGoogle Scholar
  305. Zusi RL (1984) A functional and evolutionary analysis of rhynchokinesis in birds. Smithson Contrib Zool 395:1–40Google Scholar
  306. Zusi RL (2013) Introduction to the skeleton of hummingbirds (Aves: Apodiformes, Trochilidae) in functional and phylogenetic contexts. Ornithol Monogr 77(1):1–94.  https://doi.org/10.1525/om.2013.77.1.1CrossRefGoogle Scholar
  307. Zweers G (1991) Transformation of avian feeding mechanisms: a deductive method. Acta Biotheor 39(1):15–36.  https://doi.org/10.1007/BF00046405CrossRefGoogle Scholar
  308. Zweers G, de Jong F, Berkhoudt H, Vanden Berge JC (1995) Filter feeding in flamingos (Phoenicopterus ruber). Condor 97(2):297–324.  https://doi.org/10.2307/1369017CrossRefGoogle Scholar
  309. Zweers GA (1974) Structure, movement, and myography of the feeding apparatus of the mallard (Anas platyrhynchos L.) A study in functional anatomy. Neth J Zool 24(4):323–467.  https://doi.org/10.1173/002829674x00192
  310. Zweers GA (1982) Drinking of the pigeon (Columba livia L.). Behaviour 80(3):274–317.  https://doi.org/10.1173/156853982x00391
  311. Zweers GA (1992) Behavioural mechanisms of avian drinking. Neth J Zool 42(1):60–84.  https://doi.org/10.1173/156854292X00035CrossRefGoogle Scholar
  312. Zweers GA, Berkhoudt H, Vanden Berge JC (1994) Behavioral mechanisms of avian feeding. In: Gilles R (ed) Advances in comparative and environmental physiology. Springer, Berlin, Heidelberg, pp 241–279Google Scholar
  313. Zweers GA, Gerritsen AFC (1996) Transitions from pecking to probing mechanisms in waders. Neth J Zool 47(2):171–208.  https://doi.org/10.1173/156854297X00176CrossRefGoogle Scholar
  314. Zweers GA, Gerritsen AFC, van Kranenburg-Voogd PJ (1977) Mechanics of feeding of the mallard (Anas platyrhynchos L., Aves, Anseriformes). Contrib Vert Evol 3:1–109Google Scholar
  315. Zweers GA, Vanden Berge JC (1997) Evolutionary transitions in the trophic system of the wader-waterfowl complex. Neth J Zool 47(3):255–287.  https://doi.org/10.1163/156854297X00021CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alejandro Rico-Guevara
    • 1
    Email author
  • Diego Sustaita
    • 2
  • Sander Gussekloo
    • 3
  • Aaron Olsen
    • 4
  • Jen Bright
    • 5
  • Clay Corbin
    • 6
  • Robert Dudley
    • 7
    • 8
  1. 1.Department of Integrative BiologyUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of Biological SciencesCalifornia State University San MarcosSan MarcosUSA
  3. 3.Department of Animal SciencesExperimental Zoology GroupWageningenThe Netherlands
  4. 4.Department of Ecology and Evolutionary BiologyBrown UniversityProvidenceUSA
  5. 5.School of GeosciencesUniversity of South FloridaTampaUSA
  6. 6.Department of Biological and Allied Health SciencesBloomsburg UniversityBloomsburgUSA
  7. 7.Department of Integrative BiologyUniversity of CaliforniaBerkeleyUSA
  8. 8.Smithsonian Tropical Research InstituteBalboaRepublic of Panama

Personalised recommendations