Skip to main content

Maturation

  • Chapter
  • First Online:
Whisky Science

Abstract

Spirits stored in wooden barrels “mature” over time: in addition to color change, certain negative characteristics diminish, and new beneficial characteristics develop. Slight changes occur when spirits are stored in glass bottles, but these are negligible compared to the changes occurring in barrels. Consequently, maturation is intimately related to the chemistry and transport properties of wood.

The finished whisky flows into a spirit vat in the spirit store and is poured into wine-saturated casks where it will mature. The function of these casks – they are generally sherry casks – is often misunderstood. They do not impart qualities to the whisky which it did not possess before, although the action of a saturated cask may be to conceal, under a strong, imported, winey flavour, some defects in an inferior whisky. But the casks give colour to whisky, which in its native state is a wholly colourless liquid. Why this austere achromatism of whisky should be unpopular is not easily to be explained. It may be that the unearthly pallor of the pure and fiery spirit strikes terror into the heart of man, as the whiteness of the whale alarmed Captain Ahab and his ship’s company.

– George Malcolm Thomas, 1930 [473]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aasen AJ, Kimland B, Almqvist S-O, Enzell CR (1972) New tobacco constituents—the structures of five isomeric megastigmatrienones. Acta Chem Scand 26:2573–2576

    Article  CAS  Google Scholar 

  2. Allen AH (1897) The chemistry of whisky. J Fed Inst Brew 3:24–48

    CAS  Google Scholar 

  3. Allen AH, Chattaway W (1887) On the examination of spirituous liquids for secondary constituents. Analyst 12:112–117

    Article  Google Scholar 

  4. Amoore JE, Hautala E (1983) Odor as an aid to chemical safety: odor thresholds compared with threshold limit values and volatilities for 214 industrial chemicals in air and water dilution. J Appl Toxicol 3:272–290

    Article  CAS  PubMed  Google Scholar 

  5. Anon (1904) Deaths. Allen. Pharm J 73(3431):132–133

    Google Scholar 

  6. Aoshima H, Tsunoue H, Koda H, Kiso Y (2004) Aging of whiskey increases 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity. J Agric Food Chem 52:5240–5244

    Article  CAS  PubMed  Google Scholar 

  7. Baldwin S, Andreasen AA (1974) Congener development in bourbon whisky matured at various proofs for 12 years. J Assoc Off Anal Chem 57:940–950

    CAS  Google Scholar 

  8. Baldwin S, Black RA, Andreasen AA, Adams SL (1967) Aromatic congener formation in maturation of alcoholic distillates. J Agric Food Chem 15:381–385

    Article  CAS  Google Scholar 

  9. Barnard A (2008) The whisky distilleries of the United Kingdom. Birlinn, Edinburgh (Reprints of articles from Harper’s Weekly gazette, 1887)

    Google Scholar 

  10. Barrera-García VD, Gougeon RD, Karbowiak T, Voilley A, Chassagne D (2008) Role of wood macromolecules on selective sorption of phenolic compounds by Wood. J Agric Food Chem 56:8498–8506

    Article  PubMed  CAS  Google Scholar 

  11. Barrera-García VD, Chassagne D, Paulin C, Raya J, Hirschinger J, Voilley A, Bellat J-P, Gougeon RD (2011) Interaction mechanisms between guaiacols and lignin: the conjugated double bond makes the difference. Langmuir 27:1038–1043

    Article  PubMed  CAS  Google Scholar 

  12. Berry DR (1984) The physiology and microbiology of Scotch whisky production. In: Bushell ME (ed) Progress in industrial microbiology, vol 19. Elsevier, Oxford, p 199–243

    Google Scholar 

  13. Black RA, Andreasen AA (1974) Gas-liquid chromatographic determination of monosaccharides and glycerol in aged distilled spirits. J Assoc Off Anal Chem 57:111–117

    CAS  Google Scholar 

  14. Bloem A, Lonvaud-Funel A, de Revel G (2008) Hydrolysis of glycosidically bound flavor compounds from oak wood by Oenococcus oeni. Food Microbiol 25:99–104

    Article  CAS  PubMed  Google Scholar 

  15. Boruff CS, Rittschof LA (1959) Effects of barreling proof on the aging of American whiskeys. Agric Food Chem 7:630–633

    Article  CAS  Google Scholar 

  16. Braus H, Eck JW, Mueller WM, Miller FD (1957) Isolation and identification of a sterol glucoside from whiskey. J Agric Food Chem 5:458–459

    Article  CAS  Google Scholar 

  17. Brockmann MC (1950) Relationship between acids, esters, and solids during the aging of whisky. J Assoc Off Agric Chem 33:127–129

    CAS  Google Scholar 

  18. Brunton SL, Tunnicliffe FW (1902) Concerning injurious constituents in whisky and their relation to flavour. Lancet 159(4110):1591–1594

    Article  Google Scholar 

  19. Cadahía E, Fernández de Simón B, Jalocha J (2003) Volatile compounds in Spanish, French, and American oak woods after natural seasoning and toasting. J Agric Food Chem 51:5923–5932

    Article  PubMed  CAS  Google Scholar 

  20. Câmara JS, Alves MA, Marques JC (2006) Changes in volatile composition of Madeira wines during their oxidative ageing. Anal Chim Acta 563:188–197

    Article  CAS  Google Scholar 

  21. Chatonnet P, Dubourdieu D (1998) Identification of substances responsible for the ‘sawdust’ aroma in oak wood. J Sci Food Agric 76:179–188

    Article  CAS  Google Scholar 

  22. Clare P, Clare M (2012) The life and times of Alfred Henry Allen, Sheffield’s first Public Analyst. J Assoc Publ Analysts 40:39–59

    Google Scholar 

  23. Clutton DW, Simpson AC (1992) The shelf life of spirits. In: Cantagrel R (ed) Élaboration et connaissance des spiritueux: recherche de al qualité, tradition et innovation, Lavoisier-Tec & Doc., p 548–555

    Google Scholar 

  24. Conner J, Paterson A, Piggott J (1989) The distribution of lignin breakdown products through new and used cask staves. In: Piggott JR, Paterson A (eds) Distilled beverage flavour. Ellis Horwood, Chichester, p 177–184

    Google Scholar 

  25. Conner J, Reid K, Richardson G (2001) SPME analysis of flavor components in the headspace of Scotch whiskey and their subsequent correlation with sensory perception. In: Leland JV, Schieberle P, Buettner A, Acree TE (eds) Gas chromatography-olfactometry, American Chemical Society, Washington, DC, p 113–122

    Chapter  Google Scholar 

  26. Conner JM, Paterson A, Piggott JR (1992) Analysis of lignin from oak casks used for the maturation of Scotch whisky. J Sci Food Agric 60:349–353

    Article  CAS  Google Scholar 

  27. Cordier B (1987) Fabrication des barriques. In: Guimberteau G (ed) Les bois et la qualité des vins et des eaux-de-vie. Connaissance de la vigne et du vin, Talence

    Google Scholar 

  28. Crampton CA, Tolman LM (1908) A study of the changes taking place in whiskey stored in wood. J Amer Chem Soc 30:98–136

    Article  CAS  Google Scholar 

  29. Cretin BN, Dubourdieu D, Marchal A (2016) Development of a quantitation method to assay both lyoniresinol enantiomers in wines, spirits, and oak wood by liquid chromatography–high resolution mass spectrometry. Anal Bioanal Chem 408:3789–3799

    Article  CAS  PubMed  Google Scholar 

  30. del Alamo-Sanza M, Nevares I (2014) Recent advances in the evaluation of the oxygen transfer rate in oak barrels. J Agric Food Chem 62:8892–8899

    Article  PubMed  CAS  Google Scholar 

  31. del Alamo-Sanza M, Nevares I (2018) Oak wine barrel as an active vessel: a critical review of past and current knowledge. Crit Rev Food Sci Nutr 58:2711–2726

    Article  PubMed  CAS  Google Scholar 

  32. Delahunty CM, Conner JM, Piggott JR, Paterson A (1993) Perception of heterocyclic nitrogen compounds in mature whisky. J Inst Brew 99:479–482

    Article  CAS  Google Scholar 

  33. Dudley WL (1908) The filtration of alcoholic liquids through wood charcoal. J Am Chem Soc 30:1784–1789

    Article  Google Scholar 

  34. Farrell RR, Wellinger M, Gloess AN, Nichols DS, Breadmore MC, Shellie RA, Yeretzian C (2015) Real-time mass spectrometry monitoring of oak wood toasting: elucidating aroma development relevant to oak-aged wine quality. Sci Rep 5:17334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Feuillat F, Perrin JR, Keller R, Aubert D, Gelhaye P, Houssement C, Perrin J, Pierre M (1994) Simulation expérimentale de “l’interface tonneau”: mesure des cinétiques d’imprégnation du liquide dans le bois et d’évaporation de surface. J Int Sci Vigne Vin 28:227–245

    Google Scholar 

  36. Foley WM Jr, Sanford GE, McKennis H Jr (1952) The mechanism of the reaction of aniline with furfural in the presence of acid. J Am Chem Soc 74:5489–5491

    Article  CAS  Google Scholar 

  37. Folin O, Denis W (1912) On phosphotungstic-phosphomolybdic compounds as color reagents. J Biol Chem 12:239–243

    CAS  Google Scholar 

  38. Fujieda M, Tanaka T, Suwa Y, Koshimizu S, Kouno I (2008) Isolation and structure of whiskey polyphenols produced by oxidation of oak wood ellagitannins. J Agric Food Chem 56:7305–7310

    Article  CAS  PubMed  Google Scholar 

  39. Germain-Robin H (2016) The maturation of distilled spirits. White Mule Press, Hayward

    Google Scholar 

  40. Glabasnia A, Hofmann T (2006) Sensory-directed identification of taste-active ellagitannins in American (Quercus alba L.) and European oak wood (Quercus robur L.) and quantitative analysis in Bourbon whiskey and oak-matured red wines. J Agric Food Chem 54(9):3380–3390

    Article  CAS  PubMed  Google Scholar 

  41. Goldberg DM, Hoffman B, Yang J, Soleas GJ (1999) Phenolic constituents, furans, and total antioxidant status of distilled spirits. J Agric Food Chem 47:3978–3985

    Article  CAS  PubMed  Google Scholar 

  42. Golon A, Kuhnert N (2012) Unraveling the chemical composition of caramel. J Agric Food Chem 60:3266–3274

    Article  CAS  PubMed  Google Scholar 

  43. Hale MD, Howlett SP, Howie D, Reid KJG, Swan JS, Ward A (1992) Novel pyrolysis and mycological processes to maintain quality and cost effectiveness in the cask maturation of scotch whisky. Tech. rep., Pentlands Scotch Whisky Research Limited, lINK (FPS) Report to the Biotechnology Unit, DTI, and the Ministry of Agriculture, Fisheries & Food

    Google Scholar 

  44. Hale MD, McCafferty K, Larmie E, Newton J, Swan JS (1999) The influence of oak seasoning and toasting parameters on the composition and quality of wine. Am J Enol Vitic 50:495–502

    Google Scholar 

  45. Haseba T, Mashimo K, Sugimoto J, Sato S, Ohno Y (2007) Maturation of whisky changes ethanol elimination kinetics and neural effects by increasing nonvolatile congeners. Alcohol Clin Exp Res 31:77S–82S

    Article  Google Scholar 

  46. Hayasaka Y, Wilkinson KL, Elsey GM, Raunkjær M, Sefton MA (2007) Identification of natural oak lactone precursors in extracts of American and French oak woods by liquid chromatography–tandem mass spectrometry. J Agric Food Chem 55:9195–9201

    Article  CAS  PubMed  Google Scholar 

  47. Hehner O (1904) Obituary notice. Alfred Henry Allen. Analyst 29:233–242

    Google Scholar 

  48. Henry TA, Auld SJM (1905) On the probable existence of emulsin in yeast. Proc R Soc Lond B 513:568–580

    Article  Google Scholar 

  49. Hewitt JT (1902) The retarding influence of aldehydes on the maturation of potable spirits. J Soc Chem Ind 21:96–102

    Google Scholar 

  50. Hofmann T, Schieberle P (1996) Studies on intermediates generating the flavour compounds 2-methyl-3-furanthiol, 2-acetyl-2-thiazoline and sotolon by Maillard-type reactions. In: Taylor AJ, Mottram DS (eds) Flavor science: recent developments. Royal Society of Chemistry, Cambridge, p 182–187

    Chapter  Google Scholar 

  51. Hossain SJ, Aoshima H, Koda H, Kiso Y (2002) Potentiation of the ionotropic GABA receptor response by whiskey fragrance. J Agric Food Chem 50:6828–6834

    Article  CAS  PubMed  Google Scholar 

  52. Jarauta I, Cacho J, Ferreira V (2005) Concurrent phenomena contributing to the formation of the aroma of wine during aging in oak wood: an analytical study. J Agric Food Chem 53:4166–4177

    Article  CAS  PubMed  Google Scholar 

  53. John P (1991) Current cooperage practices. Wine Ind J 6(1):66–68

    Google Scholar 

  54. Joseph E, Marché M (1972) Contribution a l’étude du vieillissement du cognac—Identification de la scopolétine, de l’aesculétine, de l’ombelliférone, de la β-methyl-ombrelliférone, de l’æsculine, et de la scopoline, hétérosides provenant du bois. Conn Vigne Vin 6(3):273–330

    Google Scholar 

  55. Kahn JH, Shipley PA, LaRoe EG, Conner HA (1969) Whiskey composition: identification of additional components by single-pass gas chromatography-mass spectrometry. J Food Sci 34:587–591

    Article  CAS  Google Scholar 

  56. Katake T, Kawamoto H, Saka S (2013) Pyrolysis reactions of coniferyl alcohol as a model of the primary structure formed during lignin pyrolysis. J. Anal. Appl. Pyrolysis 104:573–584

    Article  CAS  Google Scholar 

  57. Kawamoto H (2017) Lignin pyrolysis reactions. J Wood Sci 63:117–132

    Article  CAS  Google Scholar 

  58. Kew W, Goodall I, Clarke D, Unrín D (2017) Chemical diversity and complexity of Scotch whisky as revealed by high-resolution mass spectrometry. J Am Soc Mass Spectrom 28:200–213

    Article  CAS  PubMed  Google Scholar 

  59. Kitaoka S, Suzuki K (1967) Caramels and caramelization. Part I. The nature of caramelan. Agric Biol Chem 31:753–755

    CAS  Google Scholar 

  60. Koda H, Hossain SJ, Kiso Y, Aoshima H (2003) Aging of whiskey increases the potentiation of GABAa receptor response. J Agric Food Chem 51:5238–5244

    Article  CAS  PubMed  Google Scholar 

  61. Koga K, Taguchi A, Koshimizu S, Suwa Y, Yamada Y, Shirasaka N, Yoshizumi H (2007) Reactive oxygen scavenging activity of matured whiskey and its active phenols. J Food Sci 72:S212–S217

    Article  CAS  PubMed  Google Scholar 

  62. Liebmann AJ, Rosenblatt M (1943) Changes in whisky while maturing. Ind Eng Chem 35:994–1002

    Article  CAS  Google Scholar 

  63. Liebmann AJ, Scherl B (1949) Changes in whisky while maturing. Ind Eng Chem 41:534–543

    Article  CAS  Google Scholar 

  64. Livermore D (2011) Quantification of oak wood extractives via gas chromatography—mass spectrometry and subsequent calibration of near infrared reflectance to predict the Canadian whisky ageing process. PhD thesis, Heriot-Watt

    Google Scholar 

  65. Lloyd RA, Miller CW, Roberts DL, Giles JA, Dickerson JP, Nelson NH, Rix CE, Ayers PH (1976) Flue-cured tobacco flavor. I. Essence and essential oil components. Tob Sci 40:40–48

    Google Scholar 

  66. MacDonald A (2016) Whisky. Livonia Print, Latvia, an annotated reprint by Ian Buxton of a pseudonymous book first published in 1930

    Google Scholar 

  67. MacLean JD (1952) Preservative treatment of wood by pressure methods. Agricultural handbook No. 40. U. S. Department of Agriculture, Washington, DC

    Google Scholar 

  68. MacNamara K, Brunerie P, Squarcia F, Rozenblum A (1995) Investigation of flavour compounds in whisky spent lees. In: Charalambous G (ed) Food flavors: generation, analysis and process influence. Elsevier, New York, p 1753–1766

    Chapter  Google Scholar 

  69. MacNamara K, van Wyk CJ, Augustyn OPH, Rapp A (2001) Flavour components of whiskey. II. Ageing changes in the high-volatility fraction. S Afr J Enol Vitic 22:75–81

    CAS  Google Scholar 

  70. Maga JA (1989) The contribution of wood to the flavor of alcoholic beverages. Food Rev Int 5:39–99

    Article  CAS  Google Scholar 

  71. Maga JA (1989) Formation and extraction of cis– and trans-β-methyl-γ-octalactone from Quercus alba. In: Piggott JR, Paterson A (eds) Distilled beverage flavour. Ellis Horwood, Chichester, p 171–176

    Google Scholar 

  72. Mämmelä P, Savolainen H, Lindroos L, Kangas J, Vartiainen T (2000) Analysis of oak tannins by liquid chromatography-electrospray ionisation mass spectrometry. J Chromatogr A 891:75–83

    Article  PubMed  Google Scholar 

  73. Marché M, Joseph E (1975) Étude théorique sur le cognac, sa composition et son vieillissement naturel en futs de chêne. Rev Fr D’œnol 57:1–108

    Google Scholar 

  74. Marquardt L (1882) Quantitative Bestimmung des Fuselöls im Branntwein. Ber Dtsch Chem Ges Banner 15(2):1661–1665

    Article  Google Scholar 

  75. Martinez J, Cadahía E, Fernández de Simón B, Ojeda S, Rubio P (2008) Effect of the seasoning method on the chemical composition of oak heartwood to cooperage. J Agric Food Chem 56:3089–3096

    Article  CAS  PubMed  Google Scholar 

  76. Masson E, Baumes R, Guernevé CL, Puech J-L (2000) Identification of a precursor of β-methyl-γ-octalactone in the wood of sessile oak (Quercus petraea (Matt.) Liebl.). J Agric Food Chem 48:4306–4309

    Article  CAS  PubMed  Google Scholar 

  77. Masuda M, Nishimura K (1971) Branched nonalactones from some Quercus species. Phytochemistry 10:1401–1402

    Article  Google Scholar 

  78. Masuda M, Nishimura K (1981) Changes in volatile sulfur compounds of whisky during aging. J Food Sci 47:101–105

    Article  CAS  Google Scholar 

  79. Masuku CP (1992) Thermolytic decomposition of coniferyl alcohol. J Anal Appl Pyrolysis 23:195–208

    Article  CAS  Google Scholar 

  80. Meier H (1961) Isolation and characterisation of an acylated glucomannan from pine (Pinus silvestris L.). Acta Chem Scand 15:1381–1385

    Article  CAS  Google Scholar 

  81. M’Harry S (1809) The practical distiller. John Wyeth, Harrisburgh

    Google Scholar 

  82. Mian AJ, Timell TE (1960) Isolation and properties of a glucomannan from the wood of red maple (Acer rubrum L.). Can J Chem 38:1511–1517

    Article  CAS  Google Scholar 

  83. Morrison RL (1962) The determination of acetaldehyde in high-proof fortifying spirits, beverage brandy, and wine. Am J Enol Vitic 13:159–168

    CAS  Google Scholar 

  84. Mosedale JR (1995) Effects of oak wood on the maturation of alcoholic beverages with particular reference to whisky. Forestry 68:203–230

    Article  Google Scholar 

  85. Nishimura K, Masuda M (1971) Minor constituents of whisky fusel oils 1. Basic, phenolic, and lactonic compounds. J Food Sci 36:819–822

    Article  CAS  Google Scholar 

  86. Nishimura K, Matsuyama R (1989) Maturation and maturation chemistry. In: Piggott JR, Sharp R, Duncan REB (eds) The science and technology of whiskies. Longman Scientific & Technical, New York, p 235–263

    Google Scholar 

  87. Nishimura K, Ohnishi M, Masuda M, Koga K, Matsuyama R (1983) Reactions of wood components during maturation. In: Piggott JR (ed) Flavour of distilled beverages: origin and development. Ellis Horwood, Chichester, p 241–255

    Google Scholar 

  88. Nishimura O, Mihara S (1990) Investigation of 2-hydroxy-2-cyclopenten-1-ones in roasted coffee. J Agric Food Chem 38:1038–1041

    Article  CAS  Google Scholar 

  89. Nonier M-F, Vivas de Gaulejac N, Vivas N, Vitry C (2005) Glycosidically bound flavor compounds in Quercus patraea Libl. wood. Flavour Fragr J 20:567–572

    Article  CAS  Google Scholar 

  90. Nonier MF, Vivas N, Vivas de Gaulejac N, Absalon C, Soulié P, Fouquet E (2006) Pyrolysis-gas chromatography/mass spectrometry of Quercus sp. wood. Application to structural elucidation of macromolecules and aromatic profiles of different species. J Anal Appl Pyrolysis 75:181–193

    Article  CAS  Google Scholar 

  91. Nykänen L (1984) Aroma compounds liberated from oak chips and wooden casks by alcohol. In: Nykänen L, Lehtonen P (eds) Proceedings of the Alko symposium on flavour research of alcoholic beverages. Helsinki, Foundation for Biotechnical and Industrial Fermentation Research, Helsinki, p 141–148

    Google Scholar 

  92. Nykänen L, Nykänen I (1977) Production of esters by different yeast strains in sugar fermentations. J Inst Brew 83:30–31

    Article  Google Scholar 

  93. Nykänen L, Suomalainen H (1983) Aroma of beer, wine, and distilled alcoholic beverages. D. Reidel, Boston

    Google Scholar 

  94. Nykänen L, Puputti E, Suomalainen H (1968) Volatile fatty acids in some brands of whisky, Cognac, and rum. J Food Sci 33:88–92

    Article  Google Scholar 

  95. Obst JR (1983) Analytical pyrolysis of hardwood and softwood lignins and its use in lignin-type determination of hardwood vessel elements. J Wood Chem Technol 3:377–397

    Article  CAS  Google Scholar 

  96. O’Dwyer MH (1923) The hemicelluloses III. The hemicellulose of American white oak. Biochem J 17:501–509

    Article  PubMed  PubMed Central  Google Scholar 

  97. Ohloff G (1978) Importance of minor components in flavors and fragrances. Perfumer Flavorist 3:11–22

    CAS  Google Scholar 

  98. Onishi M, Guymon JF, Crowell EA (1977) Changes in some volatile constituents of brandy during aging. Am J Enol Vitic 28:152–158

    CAS  Google Scholar 

  99. Paine JB III, Pithawalla YB, Naroral JD (2008) Carbohydrate pyrolysis mechanisms from isotopic labeling. Part 3. The pyrolysis of D-glucose: formation of C3 and C4 carbonyl compounds and a cyclopentenedione isomer by electrolytic fragmentation mechanism. J Anal Appl Pyrolysis 82:42–69

    Article  CAS  Google Scholar 

  100. Paine JB III, Pithawalla YB, Naroral JD (2008) Carbohydrate pyrolysis mechanisms from isotopic labeling. Part 4. The pyrolysis of D-glucose: the formation of furans. J Anal Appl Pyrolysis 83:37–63

    Article  CAS  Google Scholar 

  101. Parker M (1824) Arcana of arts and sciences, or farmers’ & mechanics’ manual. J. Grayson, Washington

    Google Scholar 

  102. Pasteur ML (1863) Études sur les vins. Première partie: de l’influence de l’oxygène de l’air dans la vinification. C R Hebd Seances Acad Sci 57:936–942

    Google Scholar 

  103. Paterson R, Smith GD (2011) Goodness nose. Neil Wilson, Castle Douglas

    Google Scholar 

  104. Perry DR (1986) Whisky maturation mechanisms. In: Campbell I, Priest FG (eds) Proceedings of the 2nd Aviemore Conference on Malting, Brewing, and Distilling. Institute of Brewing, London, p 409–412

    Google Scholar 

  105. Peterson RG (1976) Formation of reduced pressure in barrels during wine aging. Am J Enol Vitic 27:81–81

    Google Scholar 

  106. Pham TT, Guichard E, Schlich P, Charpentier C (1995) Optimal conditions for the formation of sotolon from α-ketobutyric acid in the French “vin jaune”. J Agric Food Chem 43:2616–2619

    Article  Google Scholar 

  107. Philp JM (1989) Cask quality and warehouse conditions. In: Piggott JR, Sharp R, Duncan REB (eds) The science and technology of whiskies, Longman Scientific & Technical, New York, p 264–294

    Google Scholar 

  108. Piggott JR, González Viñas MA, Conner JM, Withers SJ, Paterson A (1996) Effect of chill filtration on whisky composition and headspace. In: Taylor AJ, Mottram DS (eds) Flavor science: recent developments. Royal Society of Chemistry, Cambridge, p 319–324

    Chapter  Google Scholar 

  109. Pisarnitskii AF, Askenderov KA (2008) Unsaturated fatty acids and aldehydes during treatment of oak wood. Appl Biochem Microbiol 45:443–445

    Article  CAS  Google Scholar 

  110. Pisarnitskii AF, Rubeniya TY, Rutitskii AO (2006) Oak wood hemicelluloses extracted with aqueous-alcoholic media. Appl Biochem Microbio 42:514–518

    Article  CAS  Google Scholar 

  111. Poisson L (2003) Charakterisierung der Schlüsselaromastoffe in amerikanischem Bourbon Whisky und schottishchem Single Malt Whisky. PhD thesis, Technischen Universität München

    Google Scholar 

  112. Poisson L, Schieberle P (2008) Characterization of the most odor-active compounds in an American bourbon whisky by application of the aroma extract dilution analysis. J Agric Food Chem 56:5813–5819

    Article  CAS  PubMed  Google Scholar 

  113. Puech J-L, Moutounet M (1988) Liquid chomatographic determination of scopoletin in hydroalcoholic extract of oak wood and in matured distilled alcoholic beverages. J Assoc Off Anal Chem 71:512–514

    CAS  PubMed  Google Scholar 

  114. Puech J-L, Visockis RJ (1986) Extraction et evolution des composés phénoliques du bois du chêne au cours du vieillissement des whiskies. Lebensm Wiss Technol 19:469–471

    CAS  Google Scholar 

  115. Puech J-L, Feuillat F, Mosedale JR (1999) The tannins of oak heartwood: structure, properties, and their influence on wine flavor. Am J Enol Vitic 50:469–478

    CAS  Google Scholar 

  116. Puech J-L, Mertz C, Michon V, le Guernevé C, Doco T, du Penhoat CH (1999) Evolution of catalagin and vescalagin in ethanol solutions. Identification of new derivatives. J Agric Food Chem 47:2060–2066

    Article  CAS  PubMed  Google Scholar 

  117. Reazin GH (1981) Chemical mechanisms of whiskey maturation. Am J Enol Vitic 32:283–289

    CAS  Google Scholar 

  118. Reazin GH, Baldwin S, Scales HS, Washington HW, Andreasen AA (1976) Determination of congeners produced from ethanol during whisky maturation. J Assoc Off Anal Chem 59:770–776

    CAS  Google Scholar 

  119. Refsgaard HHF, Rasmussen M, Skibsted LH (1993) Light sensitivity of colourants used in alcoholic beverages. Z Lebensm Unters Forsch 197:517–521

    Article  CAS  Google Scholar 

  120. Reid KJG, Swan JS, Gutteridge CS (1993) Assessment of Scotch whisky quality by pyrolysis–mass spectrometry and the subsequent correlation of quality with the oak wood cask. J Anal Appl Pyrolysis 25:49–62

    Article  CAS  Google Scholar 

  121. Ribéreau-Gayon P, Glories Y, Maujean A, Dubourdieu D (2006) Handbook of enology vol 2: the chemistry of wine stabilization and treatments. Wiley, Chichester

    Book  Google Scholar 

  122. Royal Commission (1908) Minutes of evidence taken by the Royal Commission on Whiskey and Other Potable Spirits. Jas Treuscott & Sons, London

    Google Scholar 

  123. Sakuma H, Munakata S, Sugawara S (1981) Volatile products of cellulose pyrolysis. Agric Biol Chem 45:443–451

    CAS  Google Scholar 

  124. Salamon G, Goldie EN (1900) The manufacture of caramel. J Soc Chem Ind 19:301–310

    Google Scholar 

  125. Savchuk SA, Vlasov VN, Appolonova SA, Arbuzov VN, Vedenin AN, Mezinov AB, Grigor’yan BR (2001) Application of chromatography and spectrometry to the authentication of alcoholic beverages. J Anal Chem 56:246–264

    Article  Google Scholar 

  126. Scalbert A, Monties B, Favre J-M (1988) Polyphenols of Quercus Robur: adult tree and in vitro grown calli and shoots. Phytochemistry 27:3483–3488

    Article  CAS  Google Scholar 

  127. Schidrowitz P (1902) The chemistry of whisky I. J Soc Chem Ind 21:814–819

    Google Scholar 

  128. Schidrowitz P, Kaye F (1905) The chemistry of whisky II. J Soc Chem Ind 24:585–589

    Google Scholar 

  129. Scott RC (1902) Art of aging or treating spirits. Patent US704389A, Feb 1902

    Google Scholar 

  130. Silva Ferreira AC, Hogg T, Guedes de Pinho P (2003) Identification of key odorants related to the typical aroma of oxidation-spoiled white wines. J Agric Food Chem 51:1377–1381

    Article  CAS  PubMed  Google Scholar 

  131. Simmonds C (1919) Alcohol: its production, properties, chemistry, and industrial applications. Macmillan, London

    Google Scholar 

  132. Singleton VL (1974) Some aspects of the wooden container as a factor in wine maturation. In: Webb AD (ed) Chemistry of winemaking, vol 46. American Chemical Society, Washington, p 254–277

    Chapter  Google Scholar 

  133. Sjöström E (1993) Wood chemistry. Academic Press, New York

    Google Scholar 

  134. Skinner WW, LeClerc JA, Warren LE, Sale JW, Frary GG, Lapp ME (1930) Official and tentative methods of analysis of the Association of Official Agricultural Chemists, 3rd edn. Association of Official Agricultural Chemists, Washington, DC

    Google Scholar 

  135. Slaghenaufi D, Marchand-Marion S, Richard T, Waffo-Teguo P, Bisson J, Monti J-P, Merillon J-M, de Revel G (2013) Centrifugal partition chromatography applied to the isolation of oak wood precursors. Food Chem 141:2238–2245

    Article  CAS  PubMed  Google Scholar 

  136. Speck JC Jr (1958) The Lobry de Bruyn-Alberda van Ekenstein transformation. Adv Carbohydr Chem 13:63–103

    CAS  PubMed  Google Scholar 

  137. Suomalainen H (1970) Yeast and its effect on the flavour of alcoholic beverages. J Inst Brew 77:164–177

    Article  Google Scholar 

  138. Suomalainen H, Nykänen L (1970) Composition of whisky flavour. Proc Biochem 5(7):13–18

    CAS  Google Scholar 

  139. Swan JS, Reid KJG, Howie D, Howlett SP (1996) A study of the effects of air and kiln drying of cooperage oakwood. In: Taylor AJ, Mottram DS (eds) Flavor science: recent developments. Royal Society of Chemistry, Cambridge, p 557–561

    Google Scholar 

  140. Tanaka T, Kouno I (1996) Whisky lactone precursor from the wood of Platyrcarya strobilacea. J Nat Prod 59:997–999

    Article  CAS  Google Scholar 

  141. Thorpe TE (1890) Dictionary of applied chemistry. Longmans and Green, London

    Google Scholar 

  142. Tolbert NE, Amerine MA (1943) Charcoal treatment of brandy. Ind Eng Chem 35:1078–1082

    Article  CAS  Google Scholar 

  143. Twede D (2005) The cask age: the technology and history of wooden barrels. Packag Technol Sci 18:253–264

    Article  Google Scholar 

  144. Valaer P, Frazier WH (1936) Changes in whisky stored for four years. Ind Eng Chem 28:92–105

    Article  CAS  Google Scholar 

  145. Vivas N, Glories Y (1993) Étude de la flore fongique du chêne (Quercus sp.) caractéristique du séchage naturel des bois destinés a la tonnellerie. Cryptogam Mycol 14:127–148

    Google Scholar 

  146. Vivas N, Nonier M-F, Pianet I, Vivas de Gaulejac N, Fouquet E (2006) Proanthocyanidins from Quercus petraea and Q. robur heartwood: quantification and structures. C R Chimie 9:120–126

    Article  CAS  Google Scholar 

  147. Ward A, Hale MD, Cardias-Williams FC (1998) Isolation of fungi from air and kiln drying oak wood used for the maturation of alcoholic beverages. Holzforschung 52:359–364

    Article  CAS  Google Scholar 

  148. Warwicker LA (1960) Instability in potable spirits. I. Scotch whisky. J Sci Food Agric 11:709–716

    Article  CAS  Google Scholar 

  149. Wiley HW (1906) Foreign trade practices in the manufacture and exportation of alcoholic beverages and canned goods. US Department of Agriculture, Bureau of Chemistry Bulletin No 102

    Google Scholar 

  150. Wilkinson KL, Elsey GM, Prager RH, Pollnitz AP, Sefton MA (2004) Rates of formation of cis– and trans–oak lactone from 3-methyl-4-hydroxyoctanoic acid. J Agric Food Chem 52:4213–4218

    Article  CAS  PubMed  Google Scholar 

  151. Wilkinson KL, Prida A, Hayasaka Y (2013) Role of glycoconjugates of 3-methyl-4-hydroxyoctanoic acid in the evolution of oak lactone in wine during oak maturation. J Agric Food Chem 61:4411–4416

    Article  CAS  PubMed  Google Scholar 

  152. Williams GC, Fallin EA (1943) Activated carbon treatment of raw whisky. Ind Eng Chem 35:251–254

    Article  CAS  Google Scholar 

  153. Withers SJ, Piggott JR, Conner JM, Paterson A (1995) Comparison of Scotch malt whisky maturation in oak miniature casks and American standard barrels. J Inst Brew 101:359–364

    Article  CAS  Google Scholar 

  154. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic vaporization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599

    Article  CAS  PubMed  Google Scholar 

  155. Zohoun S, Agoua E, Degan G, Perre P (2003) An experimental correction proposed for an accurate determination of mass diffusivity of wood in steady regime. Heat Mass Transf 39:147–155

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miller, G.H. (2019). Maturation. In: Whisky Science. Springer, Cham. https://doi.org/10.1007/978-3-030-13732-8_8

Download citation

Publish with us

Policies and ethics