Pressure Sensors Based on IPMC Actuator

Part of the Engineering Materials book series (ENG.MAT.)


Pressure sensors provide information regarding with the magnitude and distribution of force along the interface. To characterize the force as a measurand, pressure sensors convert the force into especially electrical signals. Ionic polymer-metal composites have received great interest in pressure sensor technology apart from soft biomimetic actuator applications. In this chapter, we provide further insight into the IPMC materials in pressure sensor applications in terms of system design, working principle, and preparation. In addition, the current status of applications and markets of pressure sensors is described with reference to some published patents. Moreover, their historical evolution, various designs, and classification are also discussed.



The authors gratefully acknowledge funding from the Scientific and Technological Research Council of Turkey (TÜBİTAK, 1001 117Z331).


  1. 1.
    GrandViewResearch, Pressure Sensor Market Size, Share, & Trends Analysis Report By Product, By Type, Technology (Piezoresistive, Electromagnetic, Capacitive, Resonant Solid-state, Optical), By Application, By Region, And Segment Forecasts, 2018–2025, in Market Research Report (2018)Google Scholar
  2. 2.
    Carlson, R.W.: Telemetric device. Google Patents (1936)Google Scholar
  3. 3.
    Katzir, S.: The discovery of the piezoelectric effect. Arch. Hist. Exact Sci. 57(1), 61–91 (2003)Google Scholar
  4. 4.
    Ballato, A.: Piezoelectricity: history and new thrusts. In: Proceedings of IEEE Ultrasonics Symposium, 1996. IEEE (1996)Google Scholar
  5. 5.
    Smith, C.S.: Piezoresistance effect in germanium and silicon. Phys. Rev. 94(1), 42 (1954)Google Scholar
  6. 6.
    Polye, W.: Temperature compensator for capacitive pressure transducers. Google Patents (1973)Google Scholar
  7. 7.
    Bell, R.L.: Capacitive pressure transducer. Google Patents (1979)Google Scholar
  8. 8.
    Gong, S., et al.: A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 5, 3132 (2014)Google Scholar
  9. 9.
    Someya, T., et al.: A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl. Acad. Sci. 101(27), 9966–9970 (2004)Google Scholar
  10. 10.
    Lee, G.H., et al.: Chameleon-inspired mechanochromic photonic films composed of non-close-packed colloidal arrays. ACS Nano 11(11), 11350–11357 (2017)Google Scholar
  11. 11.
    Topçu, G., Güner, T., Demir, M.M.: Non-iridescent structural colors from uniform-sized SiO2 colloids. Photon. Nanostruct. Fundam. Appl. 29, 22–29 (2018)Google Scholar
  12. 12.
    Gu, Z.Z., et al.: Structural color and the lotus effect. Angew. Chem. Int. Ed. 42(8), 894–897 (2003)Google Scholar
  13. 13.
    Han, X., Liu, Y., Yin, Y.: Colorimetric stress memory sensor based on disassembly of gold nanoparticle chains. Nano Lett. 14(5), 2466–2470 (2014)Google Scholar
  14. 14.
    Hierold, C., et al.: Nano electromechanical sensors based on carbon nanotubes. Sens. Actuators A 136(1), 51–61 (2007)Google Scholar
  15. 15.
    Smith, A., et al.: Electromechanical piezoresistive sensing in suspended graphene membranes. Nano Lett. 13(7), 3237–3242 (2013)Google Scholar
  16. 16.
    Keshavarzi, A., et al.: Blood pressure, pulse rate, and rhythm measurement using ionic polymer-metal composite sensors. In: Smart Structures and Materials 1999: Electroactive Polymer Actuators and Devices. 1999. International Society for Optics and PhotonicsGoogle Scholar
  17. 17.
    Maruyama, T., Sasaki, S., Saito, Y.: Potentiometric gas sensor for carbon dioxide using solid electrolytes. Solid State Ionics 23(1–2), 107–112 (1987)Google Scholar
  18. 18.
    Akar, O., Akin, T., Najafi, K.: A wireless batch sealed absolute capacitive pressure sensor. Sens. Actuators A 95(1), 29–38 (2001)Google Scholar
  19. 19.
    Chattopadhyay, S., Sarkar, J., Bera, S.C.: A low cost design and development of a reluctance type pressure transducer. Measurement 46(1), 491–496 (2013)Google Scholar
  20. 20.
    Mannsfeld, S.C., et al.: Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 9(10), 859 (2010)Google Scholar
  21. 21.
    Lipomi, D.J., et al.: Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 6(12), 788 (2011)Google Scholar
  22. 22.
    Ma, J., et al.: High-sensitivity fiber-tip pressure sensor with graphene diaphragm. Opt. Lett. 37(13), 2493–2495 (2012)Google Scholar
  23. 23.
    Helbling, T., et al.: Ultra small single walled carbon nanotube pressure sensors. In: IEEE 22nd International Conference on Micro Electro Mechanical Systems, 2009. MEMS 2009. IEEE (2009)Google Scholar
  24. 24.
    Ruiz, P.G., De Meyer, K., Witvrouw, A.: Poly-SiGe for MEMS-above-CMOS sensors. Springer (2014)Google Scholar
  25. 25.
    Tian, B., et al.: Fabrication and structural design of micro pressure sensors for tire pressure measurement systems (TPMS). Sensors 9(3), 1382–1393 (2009)Google Scholar
  26. 26.
    Ge, D., et al.: A robust smart window: reversibly switching from high transparency to angle-independent structural color display. Adv. Mater. 27(15), 2489–2495 (2015)Google Scholar
  27. 27.
    Zhang, Y., et al.: Flexible and highly sensitive pressure sensor based on microdome-patterned PDMS forming with assistance of colloid self-assembly and replica technique for wearable electronics. ACS Appl. Mater. Interfaces 9(41), 35968–35976 (2017)Google Scholar
  28. 28.
    Bhandari, B., Lee, G.-Y., Ahn, S.-H.: A review on IPMC material as actuators and sensors: fabrications, characteristics and applications. Int. J. Precis. Eng. Manuf. 13(1), 141–163 (2012)Google Scholar
  29. 29.
    Kim, K.J., Shahinpoor, M.: Ionic polymer–metal composites: II Manufacturing techniques. Smart Mater. Struct. 12(1), 65 (2003)Google Scholar
  30. 30.
    Oguro, K.: Ion-exchange polymer metal composites (IPMC) membranes. Preparation Procedure. (2001)
  31. 31.
    Shahinpoor, M., Kim, K.J.: Novel ionic polymer–metal composites equipped with physically loaded particulate electrodes as biomimetic sensors, actuators and artificial muscles. Sens. Actuators A 96(2–3), 125–132 (2002)Google Scholar
  32. 32.
    Siripong, M., et al.: A cost-effective fabrication method for ionic polymer-metal composites. In: MRS Online Proceedings Library Archive, p. 889 (2005)Google Scholar
  33. 33.
    Chung, R.-J., et al.: Preparation of gradually componential metal electrode on solution-casted Nafion™ membrane. Biomol. Eng. 24(5), 434–437 (2007)Google Scholar
  34. 34.
    Chung, C.-K., et al.: A novel fabrication of ionic polymer-metal composites (IPMC) actuator with silver nano-powders. Sens. Actuators B Chem. 117(2), 367–375 (2006)Google Scholar
  35. 35.
    Carpi, F., Smela, E.: Biomedical Applications of Electroactive Polymer Actuators. Wiley (2009)Google Scholar
  36. 36.
    Bar-Cohen, Y.: Electroactive polymer (EAP) actuators as artificial muscles: reality, potential, and challenges, vol. 5. SPIE press Bellingham, WA (2004)Google Scholar
  37. 37.
    Biddiss, E., Chau, T.: Electroactive polymeric sensors in hand prostheses: bending response of an ionic polymer metal composite. Med. Eng. Phys. 28(6), 568–578 (2006)Google Scholar
  38. 38.
    Riley, P., Wallace, G.: Intelligent chemical systems based on conductive electroactive polymers. J. Intell. Mater. Syst. Struct. 2(2), 228–238 (1991)Google Scholar
  39. 39.
    Pelrine, R., et al.: High-speed electrically actuated elastomers with strain greater than 100%. Science 287(5454), 836–839 (2000)Google Scholar
  40. 40.
    Lehmann, W., et al.: Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers. Nature 410(6827), 447 (2001)Google Scholar
  41. 41.
    Zhang, Q., Bharti, V., Zhao, X.: Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly (vinylidene fluoride-trifluoroethylene) copolymer. Science 280(5372), 2101–2104 (1998)Google Scholar
  42. 42.
    Nalwa, H.S.: Ferroelectric Polymers: Chemistry: Physics, and Applications. CRC Press (1995)Google Scholar
  43. 43.
    Eikerling, M., Kornyshev, A., Stimming, U.: Electrophysical properties of polymer electrolyte membranes: a random network model. J. Phys. Chem. B 101(50), 10807–10820 (1997)Google Scholar
  44. 44.
    Alberti, G., et al.: Polymeric proton conducting membranes for medium temperature fuel cells (110–160 C). J. Membr. Sci. 185(1), 73–81 (2001)Google Scholar
  45. 45.
    Chen, J., et al.: Double crosslinked polyetheretherketone-based polymer electrolyte membranes prepared by radiation and thermal crosslinking techniques. Polymer 48(20), 6002–6009 (2007)Google Scholar
  46. 46.
    Pu, H., Meyer, W.H., Wegner, G.: Proton transport in polybenzimidazole blended with H3PO4 or H2SO4. J. Polym. Sci. Part B Polym. Phys. 40(7), 663–669 (2002)Google Scholar
  47. 47.
    Kim, T.-H., Lim, T.-W., Lee, J.-C.: High-temperature fuel cell membranes based on mechanically stable para-ordered polybenzimidazole prepared by direct casting. J. Power Sour. 172(1), 172–179 (2007)Google Scholar
  48. 48.
    Diaz, L.A., Abuin, G.C., Corti, H.R.: Water and phosphoric acid uptake of poly [2, 5-benzimidazole](ABPBI) membranes prepared by low and high temperature casting. J. Power Sour. 188(1), 45–50 (2009)Google Scholar
  49. 49.
    Xing, B., Savadogo, O.: Hydrogen/oxygen polymer electrolyte membrane fuel cells (PEMFCs) based on alkaline-doped polybenzimidazole (PBI). Electrochem. Commun. 2(10), 697–702 (2000)Google Scholar
  50. 50.
    Jie, Z., Haolin, T., Mu, P.: Fabrication and characterization of self-assembled Nafion–SiO2–ePTFE composite membrane of PEM fuel cell. J. Membr. Sci. 312(1–2), 41–47 (2008)Google Scholar
  51. 51.
    Lin, H.-L., et al.: Silicate and zirconium phosphate modified Nafion/PTFE composite membranes for high temperature PEMFC. J. Polym. Res. 16(5), 519–527 (2009)Google Scholar
  52. 52.
    Ma, H., et al.: Cationic covalent organic frameworks: a simple platform of anionic exchange for porosity tuning and proton conduction. J. Am. Chem. Soc. 138(18), 5897–5903 (2016)Google Scholar
  53. 53.
    Evans, C.M., et al.: Anhydrous proton transport in polymerized ionic liquid block copolymers: roles of block length, ionic content, and confinement. Macromolecules 49(1), 395–404 (2015)Google Scholar
  54. 54.
    Doshi, J., Reneker, D.H.: Electrospinning process and applications of electrospun fibers. J. Electrostat. 35(2–3), 151–160 (1995)Google Scholar
  55. 55.
    Demir, M.M., et al.: Electrospinning of polyurethane fibers. Polymer 43(11), 3303–3309 (2002)Google Scholar
  56. 56.
    Greiner, A., Wendorff, J.H.: Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew. Chem. Int. Ed. 46(30), 5670–5703 (2007)Google Scholar
  57. 57.
    Dong, B., et al.: Super proton conductive high-purity Nafion nanofibers. Nano Lett. 10(9), 3785–3790 (2010)Google Scholar
  58. 58.
    Kim, K.J., Shahinpoor, M., Razani, A.: Preparation of IPMCs for use in fuel cells, electrolysis, and hydrogen sensors. In: Smart Structures and Materials 2000: Electroactive Polymer Actuators and Devices (EAPAD). International Society for Optics and Photonics (2000)Google Scholar
  59. 59.
    Levitsky, I., Kanelos, P., Euler, W.B.: Electromechanical actuation of composite material from carbon nanotubes and ionomeric polymer. J. Chem. Phys. 121(2), 1058–1065 (2004)Google Scholar
  60. 60.
    Kim, S.-M., Kim, K.J.: Palladium buffer-layered high performance ionic polymer–metal composites. Smart Mater. Struct. 17(3), 035011 (2008)Google Scholar
  61. 61.
    Le Guilly, M., Uchida, M., Taya, M.: Nafion-based smart membrane as an actuator array. In: Smart Structures and Materials 2002: Electroactive Polymer Actuators and Devices (EAPAD). International Society for Optics and Photonics (2002)Google Scholar
  62. 62.
    Nguyen, V.K., Yoo, Y.: A novel design and fabrication of multilayered ionic polymer-metal composite actuators based on Nafion/layered silicate and Nafion/silica nanocomposites. Sens. Actuators B Chem. 123(1), 183–190 (2007)Google Scholar
  63. 63.
    Bennett, M.D., Leo, D.J.: Ionic liquids as stable solvents for ionic polymer transducers. Sens. Actuators A 115(1), 79–90 (2004)Google Scholar
  64. 64.
    Nemat-Nasser, S., Zamani, S.: Experimental study of Nafion-and Flemion-based ionic polymer metal composites (IPMCs) with ethylene glycol as solvent. In: Smart Structures and Materials 2003: Electroactive Polymer Actuators and Devices (EAPAD). International Society for Optics and Photonics (2003)Google Scholar
  65. 65.
    Çilingir, H.D.: “ Equivalent” material properties for designing ionic polymer metal composite actuators by equivalent bimorph beam theory (2008)Google Scholar
  66. 66.
    Millet, P., Pineri, M., Durand, R.: New solid polymer electrolyte composites for water electrolysis. J. Appl. Electrochem. 19(2), 162–166 (1989)Google Scholar
  67. 67.
    Oguro, K., Kawami, Y., Takenaka, H.: An actuator element of polyelectrolyte gel membrane-electrode composite. Osaka Kogyo Gijutsu Shikensho Kiho 43(1), 21 (1992)Google Scholar
  68. 68.
    Sadeghipour, K., Salomon, R., Neogi, S.: Development of a novel electrochemically active membrane and ‘smart’ material based vibration sensor/damper. Smart Mater. Struct. 1(2), 172 (1992)Google Scholar
  69. 69.
    Fujiwara, N., et al.: Preparation of gold−solid polymer electrolyte composites as electric stimuli-responsive materials. Chem. Mater. 12(6), 1750–1754 (2000)Google Scholar
  70. 70.
    Onishi, K., et al.: Morphology of electrodes and bending response of the polymer electrolyte actuator. Electrochim. Acta 46(5), 737–743 (2001)Google Scholar
  71. 71.
    Jo, C., et al.: Recent advances in ionic polymer–metal composite actuators and their modeling and applications. Prog. Polym. Sci. 38(7), 1037–1066 (2013)Google Scholar
  72. 72.
    Ranjbarzadeh, S.: Modeling, Simulation and Applications of Ionic Polymer Metal Composites. Universidade Federal do Rio de Janeiro (2017)Google Scholar
  73. 73.
    Shahinpoor, M., et al.: Some experimental results on ionic polymer-metal composites (IPMC) as biomimetic sensors and actuators. In Smart Structures and Materials 1998: Smart Materials Technologies. International Society for Optics and Photonics (1998)Google Scholar
  74. 74.
    Wang, J., et al.: Design and fabrication of tactile sensors based on electroactive polymer composites. In: Electroactive Polymer Actuators and Devices (EAPAD) 2007. International Society for Optics and Photonics (2007)Google Scholar
  75. 75.
    Konyo, M., et al.: Development of velocity sensor using ionic polymer-metal composites. In: Smart Structures and Materials 2004: Electroactive Polymer Actuators and Devices (EAPAD). International Society for Optics and Photonics (2004)Google Scholar
  76. 76.
    Wu, Y., et al.: Soft mechanical sensors through reverse actuation in polypyrrole. Adv. Func. Mater. 17(16), 3216–3222 (2007)Google Scholar
  77. 77.
    Zhu, Z., et al.: An easily fabricated high performance ionic polymer based sensor network. Appl. Phys. Lett. 109(7), 073504 (2016)Google Scholar
  78. 78.
    Shahinpoor, M.: Micro-electro-mechanics of ionic polymeric gels as electrically controllable artificial muscles. J. Intell. Mater. Syst. Struct. 6(3), 307–314 (1995)Google Scholar
  79. 79.
    Nemat-Nasser, S., Li, J.Y.: Electromechanical response of ionic polymer-metal composites. J. Appl. Phys. 87(7), 3321–3331 (2000)Google Scholar
  80. 80.
    Tadokoro, S., et al.: An actuator model of ICPF for robotic applications on the basis of physicochemical hypotheses. In Proceedings of IEEE International Conference on Robotics and Automation, 2000. ICRA’00. IEEE (2000)Google Scholar
  81. 81.
    Nemat-Nasser, S.: Micromechanics of actuation of ionic polymer-metal composites. J. Appl. Phys. 92(5), 2899–2915 (2002)Google Scholar
  82. 82.
    Chen, Z., Hedgepeth, D.R., Tan, X.: A nonlinear, control-oriented model for ionic polymer–metal composite actuators. Smart Mater. Struct. 18(5), 055008 (2009)Google Scholar
  83. 83.
    Wallmersperger, T., Leo, D.J., Kothera, C.S.: Transport modeling in ionomeric polymer transducers and its relationship to electromechanical coupling. J. Appl. Phys. 101(2), 024912 (2007)Google Scholar
  84. 84.
    Pugal, D., Kim, K.J., Aabloo, A.: An explicit physics-based model of ionic polymer-metal composite actuators. J. Appl. Phys. 110(8), 084904 (2011)Google Scholar
  85. 85.
    Nardinocchi, P., Pezzulla, M., Placidi, L.: Thermodynamically based multiphysic modeling of ionic polymer metal composites. J. Intell. Mater. Syst. Struct. 22(16), 1887–1897 (2011)Google Scholar
  86. 86.
    Porfiri, M.: Charge dynamics in ionic polymer metal composites. J. Appl. Phys. 104(10), 104915 (2008)Google Scholar
  87. 87.
    Zhu, Z., et al.: Multi-physical model of cation and water transport in ionic polymer-metal composite sensors. J. Apply. Phys. 119(12), 124901 (2016)Google Scholar
  88. 88.
    Bonomo, C., Fortuna, L., Giannone, P., Graziani, S.: A method to characterize the deformation of an IPMC sensing membrane. Sens. Actuators A: Phys. 123124:146–154 (2005)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringIzmir Institute of TechnologyIzmirTurkey

Personalised recommendations