Skip to main content

Pressure Sensors Based on IPMC Actuator

  • Chapter
  • First Online:
Ionic Polymer Metal Composites for Sensors and Actuators

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 651 Accesses

Abstract

Pressure sensors provide information regarding with the magnitude and distribution of force along the interface. To characterize the force as a measurand, pressure sensors convert the force into especially electrical signals. Ionic polymer-metal composites have received great interest in pressure sensor technology apart from soft biomimetic actuator applications. In this chapter, we provide further insight into the IPMC materials in pressure sensor applications in terms of system design, working principle, and preparation. In addition, the current status of applications and markets of pressure sensors is described with reference to some published patents. Moreover, their historical evolution, various designs, and classification are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. GrandViewResearch, Pressure Sensor Market Size, Share, & Trends Analysis Report By Product, By Type, Technology (Piezoresistive, Electromagnetic, Capacitive, Resonant Solid-state, Optical), By Application, By Region, And Segment Forecasts, 2018–2025, in Market Research Report (2018)

    Google Scholar 

  2. Carlson, R.W.: Telemetric device. Google Patents (1936)

    Google Scholar 

  3. Katzir, S.: The discovery of the piezoelectric effect. Arch. Hist. Exact Sci. 57(1), 61–91 (2003)

    Google Scholar 

  4. Ballato, A.: Piezoelectricity: history and new thrusts. In: Proceedings of IEEE Ultrasonics Symposium, 1996. IEEE (1996)

    Google Scholar 

  5. Smith, C.S.: Piezoresistance effect in germanium and silicon. Phys. Rev. 94(1), 42 (1954)

    CAS  Google Scholar 

  6. Polye, W.: Temperature compensator for capacitive pressure transducers. Google Patents (1973)

    Google Scholar 

  7. Bell, R.L.: Capacitive pressure transducer. Google Patents (1979)

    Google Scholar 

  8. Gong, S., et al.: A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 5, 3132 (2014)

    Google Scholar 

  9. Someya, T., et al.: A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl. Acad. Sci. 101(27), 9966–9970 (2004)

    CAS  Google Scholar 

  10. Lee, G.H., et al.: Chameleon-inspired mechanochromic photonic films composed of non-close-packed colloidal arrays. ACS Nano 11(11), 11350–11357 (2017)

    CAS  Google Scholar 

  11. Topçu, G., Güner, T., Demir, M.M.: Non-iridescent structural colors from uniform-sized SiO2 colloids. Photon. Nanostruct. Fundam. Appl. 29, 22–29 (2018)

    Google Scholar 

  12. Gu, Z.Z., et al.: Structural color and the lotus effect. Angew. Chem. Int. Ed. 42(8), 894–897 (2003)

    CAS  Google Scholar 

  13. Han, X., Liu, Y., Yin, Y.: Colorimetric stress memory sensor based on disassembly of gold nanoparticle chains. Nano Lett. 14(5), 2466–2470 (2014)

    CAS  Google Scholar 

  14. Hierold, C., et al.: Nano electromechanical sensors based on carbon nanotubes. Sens. Actuators A 136(1), 51–61 (2007)

    CAS  Google Scholar 

  15. Smith, A., et al.: Electromechanical piezoresistive sensing in suspended graphene membranes. Nano Lett. 13(7), 3237–3242 (2013)

    CAS  Google Scholar 

  16. Keshavarzi, A., et al.: Blood pressure, pulse rate, and rhythm measurement using ionic polymer-metal composite sensors. In: Smart Structures and Materials 1999: Electroactive Polymer Actuators and Devices. 1999. International Society for Optics and Photonics

    Google Scholar 

  17. Maruyama, T., Sasaki, S., Saito, Y.: Potentiometric gas sensor for carbon dioxide using solid electrolytes. Solid State Ionics 23(1–2), 107–112 (1987)

    CAS  Google Scholar 

  18. Akar, O., Akin, T., Najafi, K.: A wireless batch sealed absolute capacitive pressure sensor. Sens. Actuators A 95(1), 29–38 (2001)

    CAS  Google Scholar 

  19. Chattopadhyay, S., Sarkar, J., Bera, S.C.: A low cost design and development of a reluctance type pressure transducer. Measurement 46(1), 491–496 (2013)

    Google Scholar 

  20. Mannsfeld, S.C., et al.: Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 9(10), 859 (2010)

    CAS  Google Scholar 

  21. Lipomi, D.J., et al.: Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 6(12), 788 (2011)

    CAS  Google Scholar 

  22. Ma, J., et al.: High-sensitivity fiber-tip pressure sensor with graphene diaphragm. Opt. Lett. 37(13), 2493–2495 (2012)

    Google Scholar 

  23. Helbling, T., et al.: Ultra small single walled carbon nanotube pressure sensors. In: IEEE 22nd International Conference on Micro Electro Mechanical Systems, 2009. MEMS 2009. IEEE (2009)

    Google Scholar 

  24. Ruiz, P.G., De Meyer, K., Witvrouw, A.: Poly-SiGe for MEMS-above-CMOS sensors. Springer (2014)

    Google Scholar 

  25. Tian, B., et al.: Fabrication and structural design of micro pressure sensors for tire pressure measurement systems (TPMS). Sensors 9(3), 1382–1393 (2009)

    Google Scholar 

  26. Ge, D., et al.: A robust smart window: reversibly switching from high transparency to angle-independent structural color display. Adv. Mater. 27(15), 2489–2495 (2015)

    CAS  Google Scholar 

  27. Zhang, Y., et al.: Flexible and highly sensitive pressure sensor based on microdome-patterned PDMS forming with assistance of colloid self-assembly and replica technique for wearable electronics. ACS Appl. Mater. Interfaces 9(41), 35968–35976 (2017)

    CAS  Google Scholar 

  28. Bhandari, B., Lee, G.-Y., Ahn, S.-H.: A review on IPMC material as actuators and sensors: fabrications, characteristics and applications. Int. J. Precis. Eng. Manuf. 13(1), 141–163 (2012)

    Google Scholar 

  29. Kim, K.J., Shahinpoor, M.: Ionic polymer–metal composites: II Manufacturing techniques. Smart Mater. Struct. 12(1), 65 (2003)

    CAS  Google Scholar 

  30. Oguro, K.: Ion-exchange polymer metal composites (IPMC) membranes. Preparation Procedure. http://ndeaa.jpl.nasa.gov/nasa-nde/lommas/eap/IPMC_PrepProcedure.htm (2001)

  31. Shahinpoor, M., Kim, K.J.: Novel ionic polymer–metal composites equipped with physically loaded particulate electrodes as biomimetic sensors, actuators and artificial muscles. Sens. Actuators A 96(2–3), 125–132 (2002)

    CAS  Google Scholar 

  32. Siripong, M., et al.: A cost-effective fabrication method for ionic polymer-metal composites. In: MRS Online Proceedings Library Archive, p. 889 (2005)

    Google Scholar 

  33. Chung, R.-J., et al.: Preparation of gradually componential metal electrode on solution-casted Nafion™ membrane. Biomol. Eng. 24(5), 434–437 (2007)

    CAS  Google Scholar 

  34. Chung, C.-K., et al.: A novel fabrication of ionic polymer-metal composites (IPMC) actuator with silver nano-powders. Sens. Actuators B Chem. 117(2), 367–375 (2006)

    CAS  Google Scholar 

  35. Carpi, F., Smela, E.: Biomedical Applications of Electroactive Polymer Actuators. Wiley (2009)

    Google Scholar 

  36. Bar-Cohen, Y.: Electroactive polymer (EAP) actuators as artificial muscles: reality, potential, and challenges, vol. 5. SPIE press Bellingham, WA (2004)

    Google Scholar 

  37. Biddiss, E., Chau, T.: Electroactive polymeric sensors in hand prostheses: bending response of an ionic polymer metal composite. Med. Eng. Phys. 28(6), 568–578 (2006)

    Google Scholar 

  38. Riley, P., Wallace, G.: Intelligent chemical systems based on conductive electroactive polymers. J. Intell. Mater. Syst. Struct. 2(2), 228–238 (1991)

    CAS  Google Scholar 

  39. Pelrine, R., et al.: High-speed electrically actuated elastomers with strain greater than 100%. Science 287(5454), 836–839 (2000)

    CAS  Google Scholar 

  40. Lehmann, W., et al.: Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers. Nature 410(6827), 447 (2001)

    CAS  Google Scholar 

  41. Zhang, Q., Bharti, V., Zhao, X.: Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly (vinylidene fluoride-trifluoroethylene) copolymer. Science 280(5372), 2101–2104 (1998)

    CAS  Google Scholar 

  42. Nalwa, H.S.: Ferroelectric Polymers: Chemistry: Physics, and Applications. CRC Press (1995)

    Google Scholar 

  43. Eikerling, M., Kornyshev, A., Stimming, U.: Electrophysical properties of polymer electrolyte membranes: a random network model. J. Phys. Chem. B 101(50), 10807–10820 (1997)

    CAS  Google Scholar 

  44. Alberti, G., et al.: Polymeric proton conducting membranes for medium temperature fuel cells (110–160 C). J. Membr. Sci. 185(1), 73–81 (2001)

    CAS  Google Scholar 

  45. Chen, J., et al.: Double crosslinked polyetheretherketone-based polymer electrolyte membranes prepared by radiation and thermal crosslinking techniques. Polymer 48(20), 6002–6009 (2007)

    CAS  Google Scholar 

  46. Pu, H., Meyer, W.H., Wegner, G.: Proton transport in polybenzimidazole blended with H3PO4 or H2SO4. J. Polym. Sci. Part B Polym. Phys. 40(7), 663–669 (2002)

    CAS  Google Scholar 

  47. Kim, T.-H., Lim, T.-W., Lee, J.-C.: High-temperature fuel cell membranes based on mechanically stable para-ordered polybenzimidazole prepared by direct casting. J. Power Sour. 172(1), 172–179 (2007)

    CAS  Google Scholar 

  48. Diaz, L.A., Abuin, G.C., Corti, H.R.: Water and phosphoric acid uptake of poly [2, 5-benzimidazole](ABPBI) membranes prepared by low and high temperature casting. J. Power Sour. 188(1), 45–50 (2009)

    CAS  Google Scholar 

  49. Xing, B., Savadogo, O.: Hydrogen/oxygen polymer electrolyte membrane fuel cells (PEMFCs) based on alkaline-doped polybenzimidazole (PBI). Electrochem. Commun. 2(10), 697–702 (2000)

    CAS  Google Scholar 

  50. Jie, Z., Haolin, T., Mu, P.: Fabrication and characterization of self-assembled Nafion–SiO2–ePTFE composite membrane of PEM fuel cell. J. Membr. Sci. 312(1–2), 41–47 (2008)

    Google Scholar 

  51. Lin, H.-L., et al.: Silicate and zirconium phosphate modified Nafion/PTFE composite membranes for high temperature PEMFC. J. Polym. Res. 16(5), 519–527 (2009)

    CAS  Google Scholar 

  52. Ma, H., et al.: Cationic covalent organic frameworks: a simple platform of anionic exchange for porosity tuning and proton conduction. J. Am. Chem. Soc. 138(18), 5897–5903 (2016)

    CAS  Google Scholar 

  53. Evans, C.M., et al.: Anhydrous proton transport in polymerized ionic liquid block copolymers: roles of block length, ionic content, and confinement. Macromolecules 49(1), 395–404 (2015)

    Google Scholar 

  54. Doshi, J., Reneker, D.H.: Electrospinning process and applications of electrospun fibers. J. Electrostat. 35(2–3), 151–160 (1995)

    CAS  Google Scholar 

  55. Demir, M.M., et al.: Electrospinning of polyurethane fibers. Polymer 43(11), 3303–3309 (2002)

    CAS  Google Scholar 

  56. Greiner, A., Wendorff, J.H.: Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew. Chem. Int. Ed. 46(30), 5670–5703 (2007)

    CAS  Google Scholar 

  57. Dong, B., et al.: Super proton conductive high-purity Nafion nanofibers. Nano Lett. 10(9), 3785–3790 (2010)

    CAS  Google Scholar 

  58. Kim, K.J., Shahinpoor, M., Razani, A.: Preparation of IPMCs for use in fuel cells, electrolysis, and hydrogen sensors. In: Smart Structures and Materials 2000: Electroactive Polymer Actuators and Devices (EAPAD). International Society for Optics and Photonics (2000)

    Google Scholar 

  59. Levitsky, I., Kanelos, P., Euler, W.B.: Electromechanical actuation of composite material from carbon nanotubes and ionomeric polymer. J. Chem. Phys. 121(2), 1058–1065 (2004)

    CAS  Google Scholar 

  60. Kim, S.-M., Kim, K.J.: Palladium buffer-layered high performance ionic polymer–metal composites. Smart Mater. Struct. 17(3), 035011 (2008)

    Google Scholar 

  61. Le Guilly, M., Uchida, M., Taya, M.: Nafion-based smart membrane as an actuator array. In: Smart Structures and Materials 2002: Electroactive Polymer Actuators and Devices (EAPAD). International Society for Optics and Photonics (2002)

    Google Scholar 

  62. Nguyen, V.K., Yoo, Y.: A novel design and fabrication of multilayered ionic polymer-metal composite actuators based on Nafion/layered silicate and Nafion/silica nanocomposites. Sens. Actuators B Chem. 123(1), 183–190 (2007)

    CAS  Google Scholar 

  63. Bennett, M.D., Leo, D.J.: Ionic liquids as stable solvents for ionic polymer transducers. Sens. Actuators A 115(1), 79–90 (2004)

    CAS  Google Scholar 

  64. Nemat-Nasser, S., Zamani, S.: Experimental study of Nafion-and Flemion-based ionic polymer metal composites (IPMCs) with ethylene glycol as solvent. In: Smart Structures and Materials 2003: Electroactive Polymer Actuators and Devices (EAPAD). International Society for Optics and Photonics (2003)

    Google Scholar 

  65. Çilingir, H.D.: “ Equivalent” material properties for designing ionic polymer metal composite actuators by equivalent bimorph beam theory (2008)

    Google Scholar 

  66. Millet, P., Pineri, M., Durand, R.: New solid polymer electrolyte composites for water electrolysis. J. Appl. Electrochem. 19(2), 162–166 (1989)

    CAS  Google Scholar 

  67. Oguro, K., Kawami, Y., Takenaka, H.: An actuator element of polyelectrolyte gel membrane-electrode composite. Osaka Kogyo Gijutsu Shikensho Kiho 43(1), 21 (1992)

    CAS  Google Scholar 

  68. Sadeghipour, K., Salomon, R., Neogi, S.: Development of a novel electrochemically active membrane and ‘smart’ material based vibration sensor/damper. Smart Mater. Struct. 1(2), 172 (1992)

    CAS  Google Scholar 

  69. Fujiwara, N., et al.: Preparation of gold−solid polymer electrolyte composites as electric stimuli-responsive materials. Chem. Mater. 12(6), 1750–1754 (2000)

    CAS  Google Scholar 

  70. Onishi, K., et al.: Morphology of electrodes and bending response of the polymer electrolyte actuator. Electrochim. Acta 46(5), 737–743 (2001)

    Google Scholar 

  71. Jo, C., et al.: Recent advances in ionic polymer–metal composite actuators and their modeling and applications. Prog. Polym. Sci. 38(7), 1037–1066 (2013)

    CAS  Google Scholar 

  72. Ranjbarzadeh, S.: Modeling, Simulation and Applications of Ionic Polymer Metal Composites. Universidade Federal do Rio de Janeiro (2017)

    Google Scholar 

  73. Shahinpoor, M., et al.: Some experimental results on ionic polymer-metal composites (IPMC) as biomimetic sensors and actuators. In Smart Structures and Materials 1998: Smart Materials Technologies. International Society for Optics and Photonics (1998)

    Google Scholar 

  74. Wang, J., et al.: Design and fabrication of tactile sensors based on electroactive polymer composites. In: Electroactive Polymer Actuators and Devices (EAPAD) 2007. International Society for Optics and Photonics (2007)

    Google Scholar 

  75. Konyo, M., et al.: Development of velocity sensor using ionic polymer-metal composites. In: Smart Structures and Materials 2004: Electroactive Polymer Actuators and Devices (EAPAD). International Society for Optics and Photonics (2004)

    Google Scholar 

  76. Wu, Y., et al.: Soft mechanical sensors through reverse actuation in polypyrrole. Adv. Func. Mater. 17(16), 3216–3222 (2007)

    CAS  Google Scholar 

  77. Zhu, Z., et al.: An easily fabricated high performance ionic polymer based sensor network. Appl. Phys. Lett. 109(7), 073504 (2016)

    Google Scholar 

  78. Shahinpoor, M.: Micro-electro-mechanics of ionic polymeric gels as electrically controllable artificial muscles. J. Intell. Mater. Syst. Struct. 6(3), 307–314 (1995)

    CAS  Google Scholar 

  79. Nemat-Nasser, S., Li, J.Y.: Electromechanical response of ionic polymer-metal composites. J. Appl. Phys. 87(7), 3321–3331 (2000)

    CAS  Google Scholar 

  80. Tadokoro, S., et al.: An actuator model of ICPF for robotic applications on the basis of physicochemical hypotheses. In Proceedings of IEEE International Conference on Robotics and Automation, 2000. ICRA’00. IEEE (2000)

    Google Scholar 

  81. Nemat-Nasser, S.: Micromechanics of actuation of ionic polymer-metal composites. J. Appl. Phys. 92(5), 2899–2915 (2002)

    CAS  Google Scholar 

  82. Chen, Z., Hedgepeth, D.R., Tan, X.: A nonlinear, control-oriented model for ionic polymer–metal composite actuators. Smart Mater. Struct. 18(5), 055008 (2009)

    Google Scholar 

  83. Wallmersperger, T., Leo, D.J., Kothera, C.S.: Transport modeling in ionomeric polymer transducers and its relationship to electromechanical coupling. J. Appl. Phys. 101(2), 024912 (2007)

    Google Scholar 

  84. Pugal, D., Kim, K.J., Aabloo, A.: An explicit physics-based model of ionic polymer-metal composite actuators. J. Appl. Phys. 110(8), 084904 (2011)

    Google Scholar 

  85. Nardinocchi, P., Pezzulla, M., Placidi, L.: Thermodynamically based multiphysic modeling of ionic polymer metal composites. J. Intell. Mater. Syst. Struct. 22(16), 1887–1897 (2011)

    CAS  Google Scholar 

  86. Porfiri, M.: Charge dynamics in ionic polymer metal composites. J. Appl. Phys. 104(10), 104915 (2008)

    Google Scholar 

  87. Zhu, Z., et al.: Multi-physical model of cation and water transport in ionic polymer-metal composite sensors. J. Apply. Phys. 119(12), 124901 (2016)

    Google Scholar 

  88. Bonomo, C., Fortuna, L., Giannone, P., Graziani, S.: A method to characterize the deformation of an IPMC sensing membrane. Sens. Actuators A: Phys. 123124:146–154 (2005)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge funding from the Scientific and Technological Research Council of Turkey (TÜBİTAK, 1001 117Z331).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa M. Demir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Topcu, G., Guner, T., Demir, M.M. (2019). Pressure Sensors Based on IPMC Actuator. In: Inamuddin, Asiri, A. (eds) Ionic Polymer Metal Composites for Sensors and Actuators. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-13728-1_8

Download citation

Publish with us

Policies and ethics